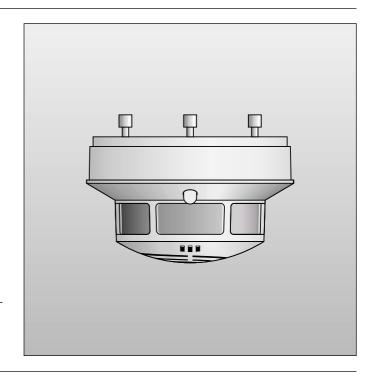


Optischer Rauchschalter ORS 142


- optische Raucherkennung
- Verschmutzungsanzeige
- Alarmschwellennachführung
- kommunikationsfähig
- Meßkammerüberwachung
- potentialfreier Öffner

Détecteur de fumée optique ORS 142

- détection de fumée optique
- indicateur de colmatage
- correction du seuil d'alarme
- communication
- surveillance par chambre de mesure
- contact d'ouverture exempt de potentiel

ORS 142 optical smoke switch

- Optical smoke detection
- Contamination warning
- Auto contamination compensation
- Communications capability
- Sensing chamber monitoring
- NC volt-free contact

Der optische Rauchschalter ORS 142 erkennt frühzeitig sowohl Schwelbrände als auch offene Brände mit Rauchentwicklung.

Ein zusätzlicher Temperaturfühler spricht bei einer Umgebungstemperatur von 70 °C an.

Er wird vorzugsweise in Feststellanlagen und maschinellen Rauchabzugsanlagen eingesetzt. Der ORS 142 löst den bisherigen Rauchschalter ORS 132 ab.

Le détecteur de fumée optique ORS 142 décèle rapidement aussi bien les feux couvants que les feux déclarés avec émission de fumée.

Un capteur thermique supplémentaire se déclenche automatiquement à partir d'une température ambiante de 70°C.

Ce dispositif s'utilise de préférence pour les contrôles automatiques des portes et systèmes de désenfumage mécaniques

The ORS 142 optical smoke switch reacts promptly to smouldering fires as well as to flaming fires that develop smoke. An additional temperature sensor is triggered at an ambient temperature of 70 °C. Its principal application is for door

holder/closer systems and powered smoke ventilation systems.

Der ORS 142 arbeitet nach dem Streulichtprinzip. Lichtsender und empfänger sind in der Meßkammer so angeordnet, daß das Licht des Senders den Empfänger nicht direkt trifft. Erst das an Schwebeteilen gestreute Licht gelangt zum Empfän-

Die Auswerteelektronik des ORS 142 überwacht den Rauchmeßteil des Melders zusätzlich auf leichte Verschmutzung, starke Verschmutzung und Störung (Meßkammerausfall). Die jeweiligen Betriebszustände zeigt der ORS 142 optisch an. Eine Langzeit-Alarmschwellennach-

führung sorgt für einen gleichbleibenden Abstand zwischen Grundsignal und Alarmschwelle, bis der Grenzwert für starke Verschmutzung erreicht ist.

Ein Relaiskontakt öffnet bei Alarm sowie bei Spannungsausfall.

Kommunikation

Der ORS 142 meldet seinen Funktionszustand über Stift 3 an eine RZA 142 (Rauchschalter-Zustandsanzeige). Hier werden ebenfalls die Zustände mit farbigen LEDs optisch angezeigt.

Wird der ORS 142 an ein RSI (Rauchschalter-Interface) angeschlossen, können die Melderzustände mit einem PC abgefragt werden. Mit einem Modem können RSI und PC über eine Postleitung kommunizieren.

DIBt-Zulassungen für:

Rauchabzugsanlagen

Feststellanlagen Z-6.5-1571 Z-6.5-1725 maschinelle L'ORS 142 fonctionne sur le principe de la lumière diffuse. L'émetteur et le récepteur de lumière sont positionnés dans la chambre de mesure de manière que la lumière provenant de l'émetteur ne parvienne pas directement au récepteur, mais seulement sous forme de lumière diffusée sur les particules en suspension.

L'unité d'évaluation électronique de l'ORS 142 surveille le dispositif de mesure de fumée du détecteur afin de déceler l'encrassement, faible ou important, ainsi que les pannes (défaillances de la chambre de mesure). Les états de fonctionnement de l'ORS 142 sont signalés de manière optique. Le dispositif de correction du seuil d'alarme assure un écart constant entre le signal de base et le seuil d'alarme, et ceci jusqu'à ce que la valeur limite d'encrassement important soit atteinte.

Un contact de relais s'ouvre en cas d'alarme ou d'absence de courant.

Communication

L'ORS 142 signale son état de fonctionnement au niveau de l'ergot 3 de l'indicateur de fonctionnement RZA 142. Des DEL de couleur signalent également les états de fonctionnement de manière optique.
Lorsque l'ORS 142 est branché sur une interface de détecteur de fumée, il est possible de vérifier l'état de fonctionnement du détecteur à partir d'un PC. A l'aide d'un modem, l'interface et le PC peuvent communiquer par une ligne téléphonique.

The ORS 142 operates on the light scatter principle. Inside the sensing chamber a light source and a light sensor are arranged so that the light normally does not fall on the sensor. It is only when airborne particles enter the chamber that light is scattered onto the sensor. The ORS 142 electronic circuitry also monitors the smoke detection system for slight contamination (dust and dirt build-up), heavy contamination and faults (sensing chamber failure). LEDs provide an optical indication of the operating status of the ORS 142. A long-term compensation function automatically maintains a constant difference between the quiescent signal and the alarm threshold, until a set limit indicating heavy contamination is reached. A relay contact opens in the alarm

Communications

condition or on power failure.

The ORS 142 signals its functional status via pin 3 to an RZA 142 smoke switch status indicator, whose coloured LEDs give an additional remote optical indication of the instrument's condition.

If the ORS 142 is linked to an RSI smoke switch interface, detector status can be scanned from a PC. The RSI and the PC can also communicate over a telecommunications line.

Homologations DIBt pour :

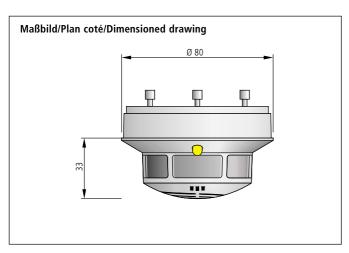
Équipements coupe-feu Z-6.5-1571 Z-6.5-1725

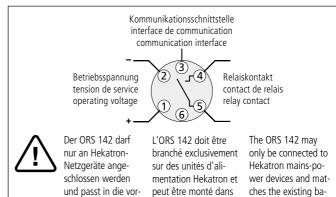
Systèmes de

Z-78.5-15

désenfumage mécaniques Z-78.5-15

DIBt approvals for:


Hold-open systems Z-6.5-1571 Z-6.5-1725


Powered smoke ventilation systems

Z-78.5-15

Technische Daten/Caractéristiques techniques/Technical data

nach/selon/to EN 54, Teil 7	Rauch	Fumée	Smoke
70 °C	Temperatur	Température	Temperature
18 bis/à/to 28 VDC	Betriebsspannung	Tension de service	Operating voltage
	Stromaufnahme bei 28 V_	Consommation pour 28 V_	Current draw at 28 V DC
max. 21 mA	in Ruhe	au repos	quiescent
max. 10 mA	bei Alarm	en cas d'alarme	in alarm
max. 25 mA	bei Störung	en cas de défaillance	in fault
Öffner/contact d'ouverture/NC	Relaiskontakte	Contacts de relais	Relay contact
max. 30 VDC	Schaltspannung	Tension d'enclenchement	switched voltage
max. 1 A	Schaltstrom	Courant d'enclenchement	switched current
max. 30 W	Schaltleistung	Puissance de rupture	switched power
IP 42	Schutzart	Indice de protection Ingress protection	
-20 bis/à/to +80 °C	Betriebsumgebungstemperatur	Température ambiante d'exploitation	Ambient operating temperature
120 g	Gewicht	Poids	Weight

type 143.

les socles existants du

ses type 143.

handene Sockelserie

143.

Relais/Relais/Relay		Einzelanzeige/Af individuel/LED	fichage
Betrieb en service in operation	4 5 5	grün/vert/green	
leicht verschmutzt légèrement encrassé slight contamination	0 4	grün/vert/green gelb/jaune/yellow	
stark verschmutzt encrassé heavy contamination	4 5 5	grün/vert/green gelb/jaune/yellow	
Störung défaillance fault	3 4 5 5	gelb/jaune/yellow	
Alarm alarme alarm	5	rot/rouge/red	
spannungslos hors tension power off	5	dunkel/sombre/darl	<

		Technische Änderungen sowie Liefermög- lichkeiten vorbehalten.	Sous réserve de modifications techniques ainsi que de possibilités de livraison.	Specifications subject to change without notice. Delivery subject to availability.
		andere Farben auf Anfrage	autres couleurs sur demande	other colours on request
5 000 552	ORS 142	Rauchschalter, weiß nach RAL 9010	Détecteur de fumée, blanc RAL 9010	Smoke switch, white (DIN shade RAL 9010)

 Brühlmatten 9

 D-79295 Sulzburg

 www.hekatron.de
 Telefon (07634) 500-264

 info@hekatron.de
 Telefax (07634) 500-323

A member of the Swiss Securitas Group

Sicherheitssysteme

ENERCON

WEC Characteristics E-101

page 1 of 1

WIND ENERGY CONVERTER CHARACTERISTICS E-101

Rotor	
Туре	E-101
Rotor diameter	101 m
Swept area	8012 m ²
Power regulation	Pitch
RPM	4 –14,5 min ⁻¹
Cut in wind	2,5 m/s
Cut out wind	28 – 34 m/s
Survival wind speed	59,5 m/s

Gear Box	
Not applicable	No gearbox

Blades	
Manufacturer	ENERCON
Blade length	48,5 m
Material	GRP (Epoxy)
Lightning protection	included

Generator	
Manufacturer	ENERCON
Nominal Power	3000 kW
Type (model)	Synchronous, direct-drive ringgenerator
Protection classification	IP 23
Insulation class	F

Yaw System	
Type	electrical motors
Yaw control	Active (based on wind vane signal)
Yaw rate	0,5°/sec

Controller	
Manufacturer	ENERCON
Type	microprocessor
Grid connection	Via ENERCON inverter
Remote communication	ENERCON Remote Monitoring System
UPS	included

Braking System	
Aerodynamic brake	 three independent blade pitch systems with emergency supply rotor brake rotor lock, locking at 30°

Tower			
Hub heights	99 m	135 m	
Tower	Prefab concrete	Prefab concrete	
Design Wind Class	IIA	IIA	

Sources: Design Assessment

© by ENERCON GmbH. All r	ights reserved.		
Created/Date:	M. Lüninghöner	Checked	AH/09/2009
Dpt.:	ŠL_HB	Approved:	SL_HB_WEC Characteristics_E-101_Rev001_eng-
Revision:	001/31.03.2010	Reference	eng.doc

E-101/BF/133/27/01 Flat Foundation without Buoyancy Seite/Page 1 von/of 4

FUNDAMENT-DATENBLATT FOUNDATION DATA SHEET

E-101/BF/133/27/01

WZ III (DIBt- Richtlinie Fassung 2004, Anhang B) WZ 4; GK I (DIN 1055-4: 2005-03) WTC II A (IEC 61400-1, 3rd edition, 2005-08) WEA-Klasse II A (DIN EN 61400-1, 2006-07)

Bauteil:

Fundament-Flachgründung ohne Auftriebswirkung Component: Foundation - Flat Foundation without Buoyancy

8107894074-7 FI Reviewed TÜV NORD SysTec GmbH & Co. KG

2 O. APR. 2011

This document has been forwarded upon request or with regard to a specific order. The recipient has not been registered. The recipient will not be automatically notified about any amendments.

Any copying and disclosure to third parties require the permission of ENERCON GmbH.

Document information:		© Copyright ENERCON	GmbH. All rights reserved.	
Author/ date:	MFE / 2011-02-09			
Department:	WRD-K	Translator / date:		-
Approved / date:	TE / 2011-02-09	Revisor / date:		-
Revision / date	MFE 1 / 2011-03-14	Reference:	WRD-K-04-FDB-FEB-E-101 BF 133 27 01-Rev 1-EN	

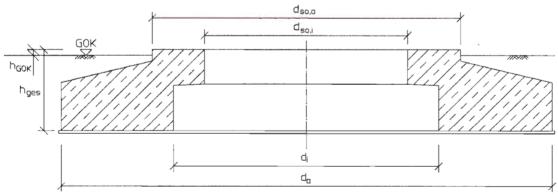
E-101/BF/133/27/01 Flat Foundation without Buoyancy

Seite/Page 2 von/of 4

1.0 General information

Design-specific structural analysis:

Structural calculation by ENERCON GmbH,


E-101/BF/133/27/01

Flat foundation without buoyancy – Ø 20.90 m

Revision 1 - 14.03.2011

2.0 Foundation dimensions

Outer diameter	da	20.90 m
Inner diameter	d _i	11.20 m
Base diameter – outside	d _{so,a}	13.50 m
Base diameter – inside	$d_{so,i}$	8.50 m
Foundation height	h _{ges}	3.10 m
Base height	h _{so}	0.40 m
Spur incline height	h _n	0.60 m
Spur height	h _{sp}	2.10 m
Difference between foundation top edge and ground level	h _{gok}	0.20 m
Concrete quality and volume	C 30/37	677 m³
Reinforcement steel and weight	B 500B	68.6 t

Document information:

Author/ date: Department: Approved / date: Revision / date:

© Copyright ENERCON GmbH. All rights reserved.

MFE / 2011-02-09 WRD-K

TE / 2011-02-09 MFE 1 / 2011-03-14 Reference:

Translator / date: Revisor / date:

E-101/BF/133/27/01 Flat Foundation without Buoyancy Seite/Page 3 von/of 4

3.0 Minimum rocking spring stiffness

Observe the following minimum values with regard to elastic clamping between foundation and

Total system	kφ,stat 15000 [MNm/rad]
(tower and foundation)	kφ,dyn 150000 [MNm/rad]

The resulting required dynamic stiffness moduli (E_{oed,dyn}) depend on the foundation dimensions and Poisson's ratio.

Equivalent radius of a circle with the same stiffness:

$$r = 10.23 \text{ m}$$

The following applies to circular foundations:

$$k_{\varphi} = \frac{8 \cdot G \cdot r^3}{3 \cdot (1 - v)}$$

This means that

$$\mathbf{E}_{\mathsf{oed},\mathsf{dyn}} = \mathbf{k}_{\varphi} \cdot \frac{3}{4} \cdot \frac{1}{\mathbf{r}^3} \cdot \frac{(1+\mathbf{v}) \cdot (1-\mathbf{v})^2}{1-\mathbf{v}-2 \cdot \mathbf{v}^2} \text{ where } \mathbf{G} = \text{shear modulus}$$

$$\mathbf{r} = \text{radius}$$

$$\mathbf{v} = \text{Poisson's ratio}$$

4.0 Allowed inclination

Maximum allowed inclination due to subsoil settlement within 20 years, related to the outer diameter.

5.0 Soil bearing pressure

The in-situ subsoil must be able to bear a minimum pressure of $\sigma_{k,vorh}$ = 401 kN/m².

Document information:

© Copyright ENERCON GmbH. All rights reserved.

Author/ date: Department: Approved / date: Revision / date:

MFE / 2011-02-09 WRD-K TE / 2011-02-09

Translator / date: Revisor / date:

MFE 1 / 2011-03-14 | Reference:

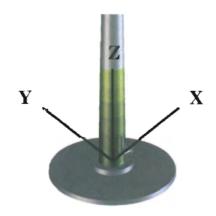
E-101/BF/133/27/01 Flat Foundation without Buoyancy Seite/Page 4 von/of 4

6.0 Loads at the bottom edge of the foundation

The F_Z loads indicated include the dead weight of the foundation γ = 25 kN/m³ and soil weight γ = 18 kN/m³ when dry.

6.1 Characteristic load cases

Load case	(γ _{aero} /γ _{mass})	F _{xy} [k N]	F _z [kN]	M _{xy} [kNm]	M _z [kNm]
DLC 1.0	(1.00/1.00)	1100	-36707	103954	-
DLC 3.2	(1.00/1.00)	1470	-36790	153801	-8420
DLC 6.2	(1.00/1.00)	1700	-36590	189565	-8590


Loads do not include partial safety factor ($\gamma_F = 1.0$)

6.2 Load case design values

Load case	(γ _{aero} /γ _{mass})	F _{xy} [kN]	F _z [kN]	M _{xy} [kNm]	M _z [kNm]
DLC 3.2	(1.35/1.35)	2110	-49067	217115	-11600
DLC 3.2	(1.35/1.00)	2110	-36808	217115	-11600

All loads include partial safety factors

7.0 Coordinate system

Document information:

Author/ date: Department: Approved / date: Revision / date: © Copyright ENERCON GmbH. All rights reserved.

MFE / 2011-02-09

WRD-K

TE / 2011-02-09 Revisor / date: MFE 1 / 2011-03-14 Reference:

Translator / date:

Gewichte / Weights E-101

In der folgenden Tabelle sind die Gewichte der Transport- und Aufbaueinheiten der E-101 angegeben. Es ist zu beachten, dass es sich dabei um ca.-Angaben handelt. Bei den Einzelgewichten sind jeweils die notwendigen Transport- und Aufbauvorrichtungen berücksichtigt, das angegebene Gondelgesamtgewicht entspricht der Turmkopfmasse nach Fertigstellung der Anlage.

In the following table the weights of the transport and installation component-assemblies of the E-101 are given. It is to be noted that the values are approximated. The weights include the necessary transport and installation devices, the given value for overall nacelle weight corresponds to the tower head mass after completion of the turbine.

Transport	Transport		
Rotorblatt mit HKS	Rotor blade with fin	ca. 21,0	t
3x HKS	3x Fin	ca. 2,4	t
Rotornabe	Rotor hub	ca. 50,0	t
Generator	Generator	ca. 83,0	t
Gondel (Maschinenträger etc.)	Nacelle (main carrier etc.)	ca. 59,0	t
Aufbau	Installation		
Rotornabe (incl. Rotorblätter)	Rotor hub (incl. rotor blades)	ca.115,0	t
Generator	Generator	ca. 84,0	t
Generator-Stator	Generator stator	ca. 52,0	t
Generator-Rotor	Generator rotor	ca. 35,0	t
Gondel (Maschinenträger etc.)	Nacelle (main carrier etc.)	ca. 59,0	t
Gondelgesamtgewicht	Overall nacelle weight	ca.255,0	t

Erstellt/Datum: Freigegeben/Datum: Socher, S. / 2012-02-23 W. Fricke / 2012-04-03 Werk/Abteilung:

WRD / Konstruktion Maschinenbau

Sound Power Level E-101

Page **1 of 2**

Sound Power Level of the ENERCON E-101 3.0 MW

Publisher:

ENERCON Canada Inc. 1000, rue de La Gauchetière ouest Bureau 2310 Montréal, QC, H3B 4W5 +1 514 ENERCON (+1 514 363 7266)

Copyright:

© ENERCON Canada Inc. Any reproduction, distribution and utilisation of this document as well as the communication of its contents to third parties without express authorisation is prohibited. Violators will be held liable for monetary damages. All rights reserved in the event of the grant of a patent, utility model or design.

Content subject to change:

ENERCON Canada Inc. reserves the right to change, improve and expand this document and the subject matter described herein at any time without prior notice.

Author/date:	H.Shahriar /15.06.12	Translator/date:	N.Nnnn / DD.MM.YY
Department:	Sales	Revisor/date:	H.Shahriar / 28.05.13
Approved/date:	E. DeGroot/29.05.13	Reference:	Annex 12 Sound Power Level E-101d
Released/date:	H.Shahriar /29.05.13		

Sound Power Level E-101

Page 2 of 2

The following represents the maximum sound power level of the E-101 3.0 MW for the entire operational range of wind speeds in accordance with the measurement technique IEC 61 400 – 11:2002 and A1:2006.

Sound Power Level for the E-101 with 3.0 MW rated power

Hub Height	124m	135m			
95% rated power	104.8 dB(A)	104.8 dB(A)			

- 1. A tonal audibility of $\Delta L_{a,k} \le 2$ dB can be expected over the whole operational range and is valid in the near vicinity of the turbine according to IEC 61 400 -11 ed. 2.
- 2. Sound power level values provided in the table are valid for the **Operational Mode I**. The respective power curve is the calculated power curve E-101 dated October 2009 (Rev 2.0).
- 3. Due to typical measurement uncertainties, if the sound power level is measured according to the accepted method, the measured values can differ from the values shown in this document in the range of +/- 1dB.

Accepted measurement method:

IEC 61400-11 ed.2 ("Wind turbine generator systems – Part 11: Acoustic noise measurement techniques; Second edition, 2002 – 12").

If the difference between tonal noise and background noise during a measurement is less than 6 dB, a higher uncertainty must be considered.

4. The sound power level of a wind turbine depends on several factors such as, but not limited to, regular maintenance and day-to-day operation in compliance with the manufacturer's operating instructions. Therefore, this data sheet cannot, and is not intended to, constitute an express or implied warranty towards the customer that the E-101 WEC will meet the exact sound power level as shown in this document at any project specific site.

Author/date:	H.Shahriar /15.06.12	Translator/date:	N.Nnnn / DD.MM.YY
Department:	Sales	Revisor/date:	H.Shahriar / 28.05.13
Approved/date:	E. DeGroot/29.05.13	Reference:	Annex 12 Sound Power Level E-101d
Released/date:	H.Shahriar /29.05.13		

Summary of Test Report (Measured hub height of 99 m) /1/

Master Data Sheet "Geräusche" (Noise), in accordance with

"Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte" (Technical Guidelines for Wind Turbine Generators, Part 1: Determination of sound emission values)

Rev. 18 of February 1, 2008 (Editor: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel)

Extract of Test Report 213122-02.01 IEC

on noise emission of wind turbine generator of type E-101 Technical Data (manufacturer's specifications) **General Data** Manufacturer of WTG: Enercon GmbH Rated power (generator): 3,050 (3,250) kW 1010002 101 m Serial number: Diameter of rotor: Location of WTG (approx.): 49733 Haren Hub height above ground: 99 m Geographic co-ordinates: GK longitude: 25.76.214 Type of tower: conical tubular concrete GK latitude: 58.59.856 Power control: Pitch Complementary rotor data Complementary data of gear unit and generator (manufacturer's specifications) (manufacturer's specifications) Manufacturer of rotor blade: Enercon Manufacturer of gear unit: not applicable Type of rotor blade: E-101-1 Type of gear unit: not applicable Blade setting angle: variable Manufacturer of generator: Enercon Number of rotor blades: Type of generator: G-101/30-G2 5 to 14.7 rpm. (mode OM I) 5 to 14.7 rpm. (mode OM I) Rotor speed range: Rated speed of generator:

Calculated Performance Chart: Performance characteristic E101 3 MW OM I; calculated by ENERCON (Rev. 1.0)

Calculated Performance Chart: Performance characteristic E101 3 MW OM I; calculated by ENERCON (Rev. 1.0)																
			Reference Poir								Noi	se emiss	ion	01		
			a neight of 10 m					true elec	trical powe	parameter parameter			observations of the control of the c			
				6 ו	ns ⁻¹			1,414 kW			10	03.6 dB(<i>A</i>	١)			
				7 ו	ns ⁻¹			2.07	77 kW			04.3 dB(<i>A</i>				
sound power	r level L _w	A.P		8 1	ns⁻¹			2.75	51 kW			04.8 dB(<i>A</i>				
•		,.		9 ו	ns ⁻¹				37 kW			04.6 dB(<i>A</i>			(1))
				10 ו	ns ⁻¹				50 kW				,		(2)	
				6 1	ns ⁻¹				14 kW			- 1.5 dB				
				7 ו	ns ⁻¹				77 kW			0 dB				
tonal audibili	ty ∍L _{a,k}			8 1	ns ⁻¹				51 kW			0 dB				
				9 ו	ns ⁻¹				37 kW			0 dB			(1))
				10 ו	ns ⁻¹				50 kW						(2)	
				6 ו	ns ⁻¹				1,414 kW			0 dB				
	4 4	.	7 me ⁻¹					2,077 kW			0 dB					
impulse adj			8 ms ⁻¹					2,751 kW			0 dB					
immediate vi	CITILY KIN		9 ms ⁻¹					2,98	37 kW	37 kW 0 dB				(1)		
			10 ms ⁻¹					3,08	050 kW				(2)			
Third-octave	band sou	nd p	owe		for v _s =	6 ms	¹ in d	B(A)		•			•			
Frequency	50	(63	80	100	1	25	160 200		250 315		400	5	00	630	
$L_{WA,P}$	78.3	8	1.8*	83.0**	84.2	8	9.6	85.7*	89.2	92	2.7	94.1	94.6	9	5.1	94.9
Frequency	800	,	000	1,250	1,600		000	2,500	3,150		000	5,000	6,300	- ,	000	10,000
$L_{WA,P}$	93.5		1.6	90.0	89.0		5.4	84.1	82.3	79	9.3	74.8	67.8*	64	.7**	65.3**
Octave band		wer	level		for $v_s = 6$		in dl									
Frequency	63			125	250		-	500	1,000	1		2,000	4,00			8,000
L _{WA,P}	85.6*			91.9	97.2			99.6	96.7			91.5	84.	ь		70.3*
Third-octave					for $v_s = 7$				000		<u> </u>	045	400		20	000
Frequency	50 78.9		3	80 84.0	100 84.9		25	160 86.4*	200 89.6		50 4.7	315 94.9	400 95.4		00 5.8	630 95.5
L _{WA,P} Frequency				2,500	3,150		+. <i>1</i> 000	5,000	6,300		000	10,000				
L _{WA,P}	94.0		2.0	90.4	89.3	86		84.7	82.9		9.9	74.4*	68.4*	64.		62.7**
Octave band					for $v_s = 7$						-					
Frequency	63			125	250		42	500	1,000			2,000	4.000			8,000
L _{WA,P}	87.3			91.5	98.4			100.3	97.1			91.9	85.	-		71.5**
			01.0 00.4													

Third-octave band sound power level for $v_s = 8 \text{ ms}^{-1}$ in dB(A)														
Frequency	50	63	80	100	12	25	160	200	250	315	400	500		630
$L_{WA,P}$	82.1	82.8	84.4	88.4	86	8.6	90.1	94.8	95.0	95.6	96.3	96	.2	82.1
Frequency	800	1,000	1,250	1,600	2,0	000	2,500	3,150	4,00	5,000	6,300	8,0	00	10,000
$L_{WA,P}$	95.0	93.3	91.5	90.4	86	6.7	85.4	83.7	80.9	75.9	69.7*	67.	1**	65.5**
Octave band	el	for $v_s = 8$	ms⁻¹ i	in dB	(A)									
Frequency	63		125	250			500	1,000)	2,000	4,000			3,000
$L_{WA,P}$	86.3		91.6	98.6			100.8	98.3		92.8	86.0		73.3**	
Third-octave	band sou	ind powe	er level	for $v_s = 9$	ms ⁻¹	in dE	S(A)							
Frequency	50	63	80	100	12	25	160	200	250	315	400	50	00	630
$L_{WA,P}$	78.6	81.9	82.4*	83.9	87	7.8	85.9*	88.6	93.8	94.2	95.1	96	.0	96.3
Frequency	800	1,000	1,250	1,600	2,0	000	2,500	3,150	4,00	5,000	6,300	8,0	00	10,000
$L_{WA,P}$	95.4	93.8	92.3	91.0	87	′ .4	86.0	84.1	81.1	76.7	71.7	68	.4	66.8*
Octave band	sound po	wer leve	el	for $v_s = 9$	ms⁻¹ i	in dB	(A)							
Frequency	63		125	250			500	1,000)	2,000	4,000)	8	8,000
$L_{WA,P}$	86.0		90.8	97.6			100.6	98.8		93.5	86.4			74.2

This summary of the test report is valid only in combination with the manufacturer's certificate dated 12/03/2013.

These specifications do not replace the test report mentioned above (particularly for noise immission predictions).

Observations:

- (1) Maximum value of standardized wind speed during the WTG-operation measurement $v_s = 8.9 \text{ m/s}$
- (2) Due to weather conditions, no data available during WTG operation
- * Difference between working and background noise < 6 dB, correction by 1.3 dB
- ** Difference between working and background noise < 3 dB, values shall not be presented

/1/ Wind turbine generator systems – Part 11: Acoustic noise; measurement techniques (IEC 61400-11:2002 and A1:2006); German version DIN EN 61400-11:2007

Measured by:

KÖTTER Consulting Engineers

- Rheine -

Date: 23/04/2013

Dipl.-Ing. Oliver Bunk

Matthias Humpohl, B.Sc.

CONSULTING ENGINEERS

Bonifatiusstraße 400 · 48432 Rheine
Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43

Stantec

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix E Sample Calculations and CADNA/A Inputs/Outputs (In the Attached CD)
February 05, 2016

Appendix E Sample Calculations and CADNA/A Inputs/Outputs (In the Attached CD)

Receiver

 Name:
 H1BIRD3890

 ID:
 O_1153

 X:
 621067.4

 Y:
 4749725.2

 Z:
 180.6

		Х	Υ	Z	Dist	Refl.	DEN	Frea.	Lw	I/a	ко	Dc	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
Name	ID	(m)	(m)	(m)	(m)			(Hz)	dB(A)	- 1		(dB)	(dB)	(dB)	(dB)	(dB)		(dB)	(dB)		dB(A)
R11TO20	T20	620627.3	4749341.4	300.6	596.1	0	DEN	Α	104.8	0	0	0	66.5	1.4	-0.5	0	0	0	0	0	37.4
R11TS13	T96	621422.7	4750668.3	299.5	1014.8	0	DEN	Α	104.8	0	0	0	71.1	2.2	-0.5	0	0	0	0	0	31.9
R11TO63	T63	621609.3	4751032.3	300.4	1420.1	0	DEN	Α	104.8	0	0	0	74.0	3.0	-0.4	0	0	0	0	0	28.2
R11TO62	T62	621876.7	4751310.9	301.0	1784.4	0	DEN	Α	104.8	0	0	0	76.0	3.6	-0.4	0	0	0	0	0	25.6
R11TO99 (formally R11TS82)	T99	619207.8	4749223.6	299.0	1929.6	0	DEN	Α	104.8	0	0	0	76.7	3.8	-0.4	0	0	0	0	0	24.7
R11TO05	T05	621171.0	4747754.0	303.8	1977.7	0	DEN	Α	104.8	0	0	0	76.9	3.9	-0.4	0	0	0	0	0	24.4
R11TO46	T46	622737.0	4748967.6	302.0	1837.5	0	DEN	Α	102.9	0	0	0	76.3	3.7	-0.3	0	0	0	0	0	23.3
R11TO47	T47	622482.9	4748446.9	303.3	1911.2	0	DEN	Α	102.9	0	0	0	76.6	3.8	-0.3	0	0	0	0	0	22.8
R11TO45	T45	623160.0	4748650.4	302.1	2355.6	0	DEN	Α	102.9	0	0	0	78.4	4.5	-0.3	0	0	0	0	0	20.2
R11TO16	T16	624153.0	4749242.9	300.3	3125.4	0	DEN	Α	104.8	0	0	0	80.9	5.6	-0.3	0	0	0	0	0	18.6
R11TO14	T14	624137.0	4748807.0	301.1	3206.3	0	DEN	Α	104.8	0	0	0	81.1	5.7	-0.3	0	0	0	0	0	18.2
R11TO44	T44	624350.0	4748471.0	301.8	3516.2	0	DEN	Α	104.8	0	0	0	81.9	6.2	-0.3	0	0	0	0	0	17.0
R11TO48	T48	624687.0	4749282.7	300.4	3648.6	0	DEN	Α	104.8	0	0	0	82.2	6.3	-0.3	0	0	0	0	0	16.5
R11TO43	T43	624815.3	4748952.0	301.1	3828.7	0	DEN	Α	104.8	0	0	0	82.7	6.6	-0.2	0	0	0	0	0	15.8
R11TO84	T84	622487.1	4753392.7	304.0	3934.7	0	DEN	Α	104.8	0	0	0	82.9	6.7	-0.3	0	0	0	0	0	15.4
R11TO22	T22	624829.2	4748510.0	302.0	3955.1	0	DEN	Α	104.8	0	0	0	82.9	6.7	-0.3	0	0	0	0	0	15.4
R11TO89	T89	623216.4	4753159.8	304.0	4053.5	0	DEN	Α	104.8	0	0	0	83.2	6.9	-0.3	0	0	0	0	0	15.1
R11TO42	T42	619935.0	4753628.0	304.0	4065.7	0	DEN	Α	104.8	0	0	0	83.2	6.9	-0.3	0	0	0	0	0	15.0
R11TO21	T21	625004.0	4748242.0	302.6	4208.5	0	DEN	Α	104.8	0	0	0	83.5	7.1	-0.3	0	0	0	0	0	14.6
R11TO61	T61	625177.0	4747970.0	302.9	4470.4	0	DEN	Α	104.8	0	0	0	84.0	7.4	-0.3	0	0	0	0	0	13.7
R11TO98	T98	617981.7	4753042.5	302.4	4532.3	0	DEN	Α	104.8	0	0	0	84.1	7.5	-0.3	0	0	0	0	0	13.6
Mohawk05(V82-1.65 MW-Vestas-103.2 dBA&Hu	MH05	623047.0	4746843.0	260.0	3497.4	0	DEN	Α	102.1	0	0	0	81.9	14.5	-1.0	0	0	0	0	0	6.7
Mohawk02(V82-1.65 MW-Vestas-103.2 dBA&Hu	MH02	622632.0	4746480.0	260.4	3603.5	0	DEN	Α	102.1	0	0	0	82.1	14.7	-1.0	0	0	0	0	0	6.2
Mohawk04(V82-1.65 MW-Vestas-103.2 dBA&Hu	MH04	623297.0	4746604.0	260.0	3836.6	0	DEN	Α	102.1	0	0	0	82.7	15.3	-1.0	0	0	0	0	0	5.1
R11TO65	T65	622983.8	4754678.9	299.0	5312.9	0	DEN	Α	104.8	0	0	0	85.5	8.4	-0.4	0	0	0	0	0	11.3
R11TO49	T49	626835.9	4748915.1	299.0	5826.4	0	DEN	Α	104.8	0	0	0	86.3	9.0	-0.5	0	0	0	0	0	10.0
R11TO19	T19	620379.6	4755516.1	299.0	5832.8	0	DEN	Α	104.8	0	0	0	86.3	9.0	-0.5	0	0	0	0	0	10.0
R11TO82	T82	618390.0	4754915.0	299.0	5841.0	0	DEN	Α	104.8	0	0	0	86.3	9.0	-0.5	0	0	0	0	0	10.0
Mohawk06(V82-1.65 MW-Vestas-103.2 dBA&Hu	MH06	622661.0	4745529.0	263.9	4489.4	0	DEN	Α	102.1	0	0	0	84.0	16.8	-1.1	0	0	0	0	0	2.3
Transformer2 (100/133/166 ONAN/ONAF/ONAF MVA)	ST2	622836.6	4754678.6	178.7	5259.9	0	DEN	Α	103.2	0	0	0	85.4	9.8	-0.3	0	0	4.1	0	0	4.1
SWT-2.221-101 - Grand Renewable Energy Project	GREPT58	614974.0	4747470.0	283.2	6498.1	0	DEN	Α	105.0	0	0	0	87.3	10.8	-0.4	0	0	0	0	0	7.4
R11TO13	T13	621410.0	4756122.0	299.0	6407.1	0	DEN	Α	104.8	0	0	0	87.1	9.6	-0.5	0	0	0	0	0	8.6
SWT-2.221-101 - Grand Renewable Energy Project	GREPT60	614680.0	4748176.0	282.6	6573.3	0	DEN	Α	105.0	0	0	0	87.4	10.9	-0.4	0	0	0	0	0	7.2
SWT-2.221-101 - Grand Renewable Energy Project	GREPT61	614750.0	4747811.0	284.5	6601.8	0	DEN	Α	105.0	0	0	0	87.4	10.9	-0.4	0	0	0	0	0	7.2
R11TO23	T23	627539.7	4748974.3	299.0	6516.8	0	DEN	Α	104.8	0	0	0	87.3	9.7	-0.5	0	0	0	0	0	8.4
SWT-2.221-101 - Grand Renewable Energy Project	GREPT62	614705.0	4747338.0	281.3	6796.2	0	DEN	Α	105.0	0	0	0	87.6	11.1	-0.4	0	0	0	0	0	6.7
R11TO12	T12	621127.0	4756402.0	299.2	6678.2	0	DEN	Α	104.8	0	0	0	87.5	9.9	-0.6	0	0	0	0	0	8.0
Mohawk01(V82-1.65 MW-Vestas-103.2 dBA&Hu	MH01	623355.0	4745400.0	268.2	4893.7	0	DEN	Α	102.1	0	0	0	84.8	17.7	-1.1	0	0	0	0	0	0.6
R11TO24	T24	627752.2	4750238.9	299.0	6705.6	0	DEN	Α	104.8	0	0	0	87.5	9.9	-0.6	0	0	0	0	0	7.9
SWT-2.221-101 - Grand Renewable Energy Project	GREPT57	614355.0	4748118.0	284.5	6902.9	0	DEN	Α	105.0	0	0	0	87.8	11.2	-0.5	0	0	0	0	0	6.5
Mohawk03(V82-1.65 MW-Vestas-103.2 dBA&Hu	MH03	623974.0	4745737.0	265.5	4935.7	0	DEN	Α	102.1	0	0	0	84.9	17.8	-1.1	0	0	0	0	0	0.4
R11TO91	T91	620503.9	4756520.8	299.1	6820.0	0	DEN	Α	104.8	0	0	0	87.7	10.0	-0.6	0	0	0	0	0	7.7
SWT-2.221-101 - Grand Renewable Energy Project	GREPT59	614326.0	4747732.0	284.5	7030.6	0	DEN	Α	105.0	0	0	0	87.9	11.3	-0.5	0	0	0	0	0	6.2
R11TO11	T11	620836.0	4756609.3	299.9	6889.1	0	DEN	Α	104.8	0	0	0	87.8	10.1	-0.6	0	0	0	0	0	7.5

Receiver

 Name:
 H1BIRD3890

 ID:
 O_1153

 X:
 621067.4

 Y:
 4749725.2

 Z:
 180.6

		х	Υ	Z	Dist	Refl.	DEN	Frea.	Lw	I/a	КО	Dc	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
Name	ID	(m)	(m)	(m)	(m)			(Hz)	dB(A)			(dB)	(dB)	(dB)	(dB)	(dB)		(dB)	(dB)		dB(A)
R11TO41	T41	620998.0	4756851.0	300.4	7127.2	0	DEN	Α,	104.8	0	0	0	88.1	10.3	-0.6	0	0	0	0	0	7.0
R11TO72	T72	620828.0	4757122.0	301.3	7401.7	0	DEN	Α	104.8	0	0	0	88.4	10.6	-0.6	0	0	0	0	0	6.4
R11TO37	T37	623038.4	4758881.0	299.0	9366.4	0	DEN	Α	104.8	0	0	0	90.4	12.4	-0.8	0	0	0	0	0	2.8
R11TO10	T10	623259.5	4758989.9	299.0	9521.3	0	DEN	Α	104.8	0	0	0	90.6	12.5	-0.8	0	0	0	0	0	2.6
WF01(Wainfleet Wind Energy Project Vesta	WF01	631359.0	4751252.0	270.1	10404.7	0	DEN	Α	105.0	0	0	0	91.3	13.6	-1.7	0	0	0	0	0	1.8
Rosa Flora Turbine	RFT	615270.0	4756417.0	250.0	8854.1	0	DEN	Α	103.5	0	0	0	89.9	9.9	-1.3	0	0	0	0	0	5.0
WF02(Wainfleet Wind Energy Project Vesta	WF02	631758.0	4750750.0	270.9	10740.0	0	DEN	Α	105.0	0	0	0	91.6	13.8	-1.8	0	0	0	0	0	1.3
WF03(Wainfleet Wind Energy Project Vesta	WF03	631921.0	4750541.0	271.3	10884.7	0	DEN	Α	105.0	0	0	0	91.7	13.9	-1.8	0	0	0	0	0	1.2
R11TS09	T95	622816.6	4760851.0	304.0	11263.2	0	DEN	Α	104.8	0	0	0	92.0	13.8	-1.0	0	0	0	0	0	0.0
WF05(Wainfleet Wind Energy Project Vesta	WF05	632706.0	4748817.0	272.1	11674.4	0	DEN	Α	105.0	0	0	0	92.3	14.4	-1.9	0	0	0	0	0	0.2
WF04(Wainfleet Wind Energy Project Vesta	WF04	632750.0	4748389.0	273.8	11759.2	0	DEN	Α	105.0	0	0	0	92.4	14.4	-2.0	0	0	0	0	0	0.1
R11TO09	T09	616789.8	4762576.1	304.0	13544.8	0	DEN	Α	104.8	0	0	0	93.6	15.3	-1.3	0	0	0	0	0	-2.9
R11TO51	T51	617020.3	4762751.8	304.0	13641.4	0	DEN	Α	104.8	0	0	0	93.7	15.4	-1.3	0	0	0	0	0	-3.0
Transformer1 (100/133/166 ONAN/ONAF/ONAF MVA)	ST1	621959.7	4761728.0	182.3	12036.0	0	DEN	Α	103.2	0	0	0	92.6	17.0	1.0	0	0	3.2	0	0	-10.6
R11TO07	T07	618635.6	4764052.9	304.0	14533.2	0	DEN	Α	104.8	0	0	0	94.2	15.9	-1.5	0	0	0	0	0	-3.9
R11TO75	T75	621356.9	4764542.6	304.0	14820.8	0	DEN	Α	104.8	0	0	0	94.4	16.1	-1.5	0	0	0	0	0	-4.2
R11TO39	T39	617348.6	4764279.3	304.0	15022.2	0	DEN	Α	104.8	0	0	0	94.5	16.2	-1.5	0	0	0	0	0	-4.4
R11TO32	T32	624780.5	4764409.8	304.0	15147.4	0	DEN	Α	104.8	0	0	0	94.6	16.3	-1.6	0	0	0	0	0	-4.5
R11TO29	T29	628498.0	4763100.5	303.1	15301.3	0	DEN	Α	104.8	0	0	0	94.7	16.4	-1.6	0	0	0	0	0	-4.7
R11TO34	T34	626486.0	4764591.4	304.0	15823.5	0	DEN	Α	104.8	0	0	0	95.0	16.6	-1.7	0	0	0	0	0	-5.2
R11TO54	T54	619944.0	4765594.0	304.0	15909.0	0	DEN	Α	104.8	0	0	0	95.0	16.7	-1.7	0	0	0	0	0	-5.3
R11TO35	T35	627163.5	4764483.1	304.0	15968.0	0	DEN	Α	104.8	0	0	0	95.1	16.7	-1.7	0	0	0	0	0	-5.3
R11TO38	T38	620669.2	4765751.8	304.0	16032.0	0	DEN	Α	104.8	0	0	0	95.1	16.8	-1.7	0	0	0	0	0	-5.4
R11TO01	T01	622985.8	4765745.3	306.3	16135.1	0	DEN	Α	104.8	0	0	0	95.2	16.8	-1.7	0	0	0	0	0	-5.5
R11TO76	T76	623639.9	4765719.5	304.0	16200.3	0	DEN	Α	104.8	0	0	0	95.2	16.8	-1.7	0	0	0	0	0	-5.5
R11TO97	T97	617214.7	4765641.9	306.9	16376.9	0	DEN	Α	104.8	0	0	0	95.3	16.9	-1.7	0	0	0	0	0	-5.7
R11TO03	T03	629895.5	4763587.6	304.0	16435.3	0	DEN	Α	104.8	0	0	0	95.3	17.0	-1.7	0	0	0	0	0	-5.7
R11TO08	T08	614544.5	4764911.4	304.7	16528.3	0	DEN	Α	104.8	0	0	0	95.4	17.0	-1.8	0	0	0	0	0	-5.8
R11TO31	T31	625150.0	4765821.0	309.0	16606.1	0	DEN	Α	104.8	0	0	0	95.4	17.1	-1.8	0	0	0	0	0	-5.9
R11TO74	T74	621655.8	4763002.3	303.7	13290.7	0	DEN	Α	102.9	0	0	0	93.5	13.8	-1.4	0	0	0	0	0	-3.1
R11TO36	T36	622378.6	4763063.1	299.0	13402.8	0	DEN	Α	102.9	0	0	0	93.5	13.9	-1.4	0	0	0	0	0	-3.2
R11TO78	T78	628581.0	4764783.0	304.0	16828.8	0	DEN	Α	104.8	0	0	0	95.5	17.2	-1.8	0	0	0	0	0	-6.1
R11TO33	T33	626968.7	4765950.4	309.0	17265.6	0	DEN	Α	104.8	0	0	0	95.7	17.4	-1.9	0	0	0	0	0	-6.4
R11TO02	T02	627379.8	4765942.2	309.0	17402.7	0	DEN	Α	104.8	0	0	0	95.8	17.4	-1.9	0	0	0	0	0	-6.6
R11TO93	T93	618324.0	4767127.0	309.0	17617.2	0	DEN	Α	104.8	0	0	0	95.9	17.5	-1.9	0	0	0	0	0	-6.7
R11TO06	T06	623095.6	4767244.5	310.0	17636.8	0	DEN	Α	104.8	0	0	0	95.9	17.6	-1.9	0	0	0	0	0	-6.8
R11TO81a	T81	616342.8	4766967.0	309.0	17877.9	0	DEN	Α	104.8	0	0	0	96.0	17.7	-2.0	0	0	0	0	0	-7.0
R11TO52	T52	614214.8	4766530.6	309.7	18149.3	0	DEN	Α	104.8	0	0	0	96.2	17.8	-2.0	0	0	0	0	0	-7.2
R11TO55	T55	623610.3	4764393.4	304.0	14887.6	0	DEN	Α	102.9	0	0	0	94.5	14.6	-1.6	0	0	0	0	0	-4.6
R11TO66	T66	619127.0	4768529.0	314.0	18904.2	0	DEN	A	104.8	0	0	0	96.5	18.1	-2.1	0	0	0	0	0	-7.7
R11TO27	T27	622534.5	4768708.0	314.0	19039.9	0	DEN	Α	104.8	0	0	0	96.6	18.2	-2.1	0	0	0	0	0	-7.9
R11T004	T04	627524.4	4767739.7	309.0	19137.2	0	DEN	Α	104.8	0	0	0	96.6	18.2	-2.2	0	0	0	0	0	-7.9
R11TO94	T94	618752.1	4768764.2	314.0	19179.8	0	DEN	Α	104.8	0	0	0	96.7	18.3	-2.2	0	0	0	0	0	-8.0
R11TO57	T57	624435.2	4768696.0	309.0	19267.9	0	DEN	Α	104.8	0	0	0	96.7	18.3	-2.2	0	0	0	0	0	-8.0

Receiver

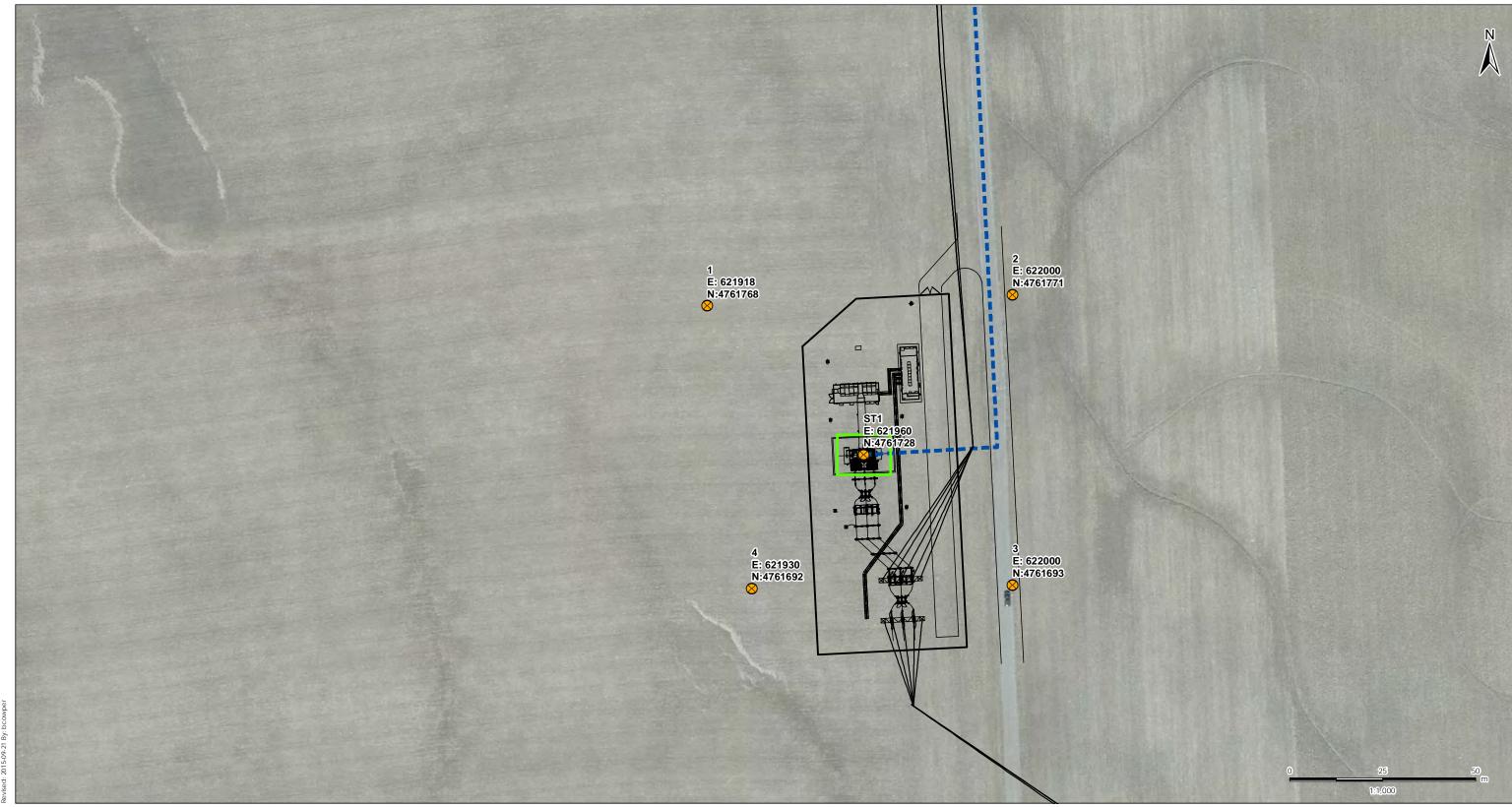
 Name:
 H1BIRD3890

 ID:
 O_1153

 X:
 621067.4

 Y:
 4749725.2

 Z:
 180.6


		Х	Υ	Z	Dist	Refl.	DEN	Freq.	Lw	I/a	КО	Dc	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	RL	Lr
Name	ID	(m)	(m)	(m)	(m)			(Hz)	dB(A)	dB	(dB)	(dB)	(dB)	(dB)	dB(A)						
R11TO58	T58	628473.0	4767629.0	309.0	19375.5	0	DEN	Α	104.8	0	0	0	96.7	18.3	-2.2	0	0	0	0	0	-8.1
R11TO28	T28	622516.5	4769095.7	309.0	19425.1	0	DEN	Α	104.8	0	0	0	96.8	18.4	-2.2	0	0	0	0	0	-8.1
R11TO85	T85	619135.8	4769107.8	314.0	19479.1	0	DEN	Α	104.8	0	0	0	96.8	18.4	-2.2	0	0	0	0	0	-8.2
R11TO56	T56	626599.0	4768825.0	309.0	19885.2	0	DEN	Α	104.8	0	0	0	97.0	18.6	-2.3	0	0	0	0	0	-8.5
R11TO53	T53	614455.8	4766402.4	309.0	17940.5	0	DEN	Α	102.9	0	0	0	96.1	16.0	-2.0	0	0	0	0	0	-7.2
R11TO18	T18	630122.5	4766228.8	309.0	18825.1	0	DEN	Α	102.9	0	0	0	96.5	16.3	-2.2	0	0	0	0	0	-7.8

Stantec

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix F Additional Information February 05, 2016

Appendix F Additional Information

1. Coordinate System: NAD 1983 UTM Zone 17N

Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2013.

3. Orthoimagery © First Base Solutions, 20xx.

Legend

Noise Emission Locations ---- Barrier

Potential Access Road

FWRN LP

Figure No. F.1

North Transformer Station

Niagara Region Wind Farm Acoustic Assessment Report

1. Coordinate System: NAD 1983 UTM Zone 17N

Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2013.

3. Orthoimagery © First Base Solutions, 20xx.

Legend

Noise Emission Locations

Proposed Turbine Location - E101 3.0 MW

■ ■ Potential Access Road

Temporary Laydown Area

Watercourse

Transformer Substation

Turbine Blade Length

FWRN LP Niagara Region Wind Farm Acoustic Assessment Report

Figure No. F.2

South Transformer Station

Stantec

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix F Additional Information February 05, 2016

MANUFACTURERS SOUND EMISSION AND ADJUSTED SOUND EMISSION

Table 3.1 Wind Turbine Sound Emission Summary

Make: ENERCON Model: E101

Electrical Rating: 3MW Hub Height: 124 m or 135 m

Data Source: Enercon (Appendix D) - for all wind shear above 0.2

Octave Band Sound Power Level (dB ref. 10⁻¹² Watts)

		Manufacturer's Emission Level						Adjusted Emission Level								
	ght Wind d (m/s)	6	7	8	9	10	6	7	8	9	10					
	63	111.3	112	112.4	112.3		112.5	112.5	112.5	112.5	112.5					
(2	125	106.5	107.2	107.6	107.5		107.7	107.7	107.7	107.7	107.7					
(Hz)	250	106	106.7	107.1	107		107.2	107.2	107.2	107.2	107.2					
lcy	500	102.8	103.5	103.9	103.8		104	104	104	104	104					
Frequency	1000	97.1	97.8	98.2	98.1		98.3	98.3	98.3	98.3	98.3					
.edi	2000	90.4	91.1	91.5	91.4		91.6	91.6	91.6	91.6	91.6					
正	4000	83.7	84.4	84.8	84.7		84.9	84.9	84.9	84.9	84.9					
	8000	73.2	73.9	74.3	74.2		74.4	74.4	74.4	74.4	74.4					
Overall (dE Wa	BA ref. 10 ⁻¹² ltts)	103.6	104.3	104.7	104.6		104.8	104.8	104.8	104.8	104.8					

Make: ENERCON

Model: E82

Electrical Rating: 2.3MW Hub Height: 135 m

Data Source: Enercon (Appendix D) - for all wind shear above 0.2

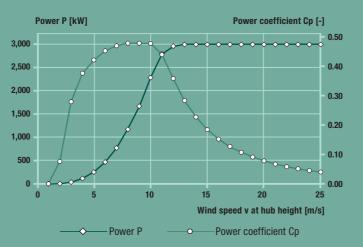
Octave Band Sound Power Level (dB ref. 10⁻¹² Watts)

		Ma	Manufacturer's Emission Level					Adjusted Emission Level								
	ght Wind I (m/s)	6	7	8	9	10	6	7	8	9	10					
	63	111.1	111.7	111.8	112.8	113.2	112.8	112.8	112.8	112.8	112.8					
(2	125	106.7	108.9	109.3	110.7	110.7	110.7	110.7	110.7	110.7	110.7					
(Hz)	250	100.6	102.8	103.2	102.9	102.3	102.9	102.9	102.9	102.9	102.9					
Jcy	500	98.9	100.8	101.4	100.5	99.7	100.5	100.5	100.5	100.5	100.5					
Frequency	1000	95.9	97.7	98.5	98.7	98.3	98.7	98.7	98.7	98.7	98.7					
bə.	2000	87.8	90.2	91	92.6	92.8	92.6	92.6	92.6	92.6	92.6					
ιĒ	4000	74.8	77.5	78.4	80.5	81.5	80.5	80.5	80.5	80.5	80.5					
	8000	76.5	75.5	74.5	74.5	76.3	74.5	74.5	74.5	74.5	74.5					
Overall (dE Wa	BA ref. 10 ⁻¹² ltts)	100.6	102.6	103.2	103.3	102.9	103.3	103.3	103.3	103.3	103.3					

¹ As per the data, overall sound power data is available from 6 m/s (corresponding to 1414 kW or approximately 38% of the rated power) to 9 m/s (corresponding to 2987 kW or approximately 99.6% of the rated power of 3MW). As per the test, the maximum sound power level occurs at 8.3 m/s wind speed and corresponding spectral data is given in the data sheet. The spectral data for other wind speed were obtained by scaling based on the overall data.

² No data was given for the 10 m/s wind speed since the turbine reaches 95% of rated power output at 8.3 m/s wind speed. For this model the attached test report indicates that the maximum sound power level occurs at 8.3 m/s wind speed. The maximum sound power level as provided from manufacturer was used. A wind shear adjusted sound data is provided in Appendix F.

Stantec


NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix F Additional Information February 05, 2016

MANUFACTURER'S CATALOG DATA

Calculated power curve

Wind [m/s]	Power P [kW]	Power coefficient Cp [-]	
1	0.0	0.000	ca/m³
2	3.0	0.076	$O = 1.225 \text{ kg/m}^3$
3	37.0	0.279	0 = 1
4	118.0	0.376	
5	258.0	0.421	
6	479.0	0.452	
7	790.0	0.469	
8	1,200.0	0.478	
9	1,710.0	0.478	
10	2,340.0	0.477	
11	2,867.0	0.439	
12	3,034.0	0.358	
13	3,050.0	0.283	
14	3,050.0	0.227	
15	3,050.0	0.184	
16	3,050.0	0.152	
17	3,050.0	0.127	
18	3,050.0	0.107	
19	3,050.0	0.091	
20	3,050.0	0.078	
21	3,050.0	0.067	
22	3,050.0	0.058	
23	3,050.0	0.051	
24	3,050.0	0.045	
25	3,050.0	0.040	

For more information on the ENERCON power curve, please see the last page.

Technical specifications E-101

Rated power: 3,000 kW

Rotor diameter: 101 m

Hub height: 99 m / 135 m

Wind zone (DIBt): WZ III

Wind class (IEC): IEC/NVN IIA

WEC concept: Gearless, variable speed
Single blade adjustment

Rotor

Type: Upwind rotor with active pitch control

Rotational direction: Clockwise No. of blades: 3 Swept area: $8,012 \text{ m}^2$

Blade material: GRP (epoxy resin);

Built-in lightning protection

Rotational speed: Variable, 4–14.5 rpm

Pitch control: ENERCON single blade pitch system;

one independent pitch system per rotor blade with allocated emergency supply

Drive train with generator

Main bearing:

Hub: Rigid

Double-row tapered/cylindrical roller bearings

Generator: ENERCON direct-drive annular

generator

Grid feed: ENERCON inverter

Brake systems: - 3 independent pitch control systems

with emergency power supply

- Rotor brake

– Rotor lock, latching (15 $^{\circ}$)

load-dependent damping

Yaw system: Active via yaw gear,

Cut-out wind speed: 28-34 m/s

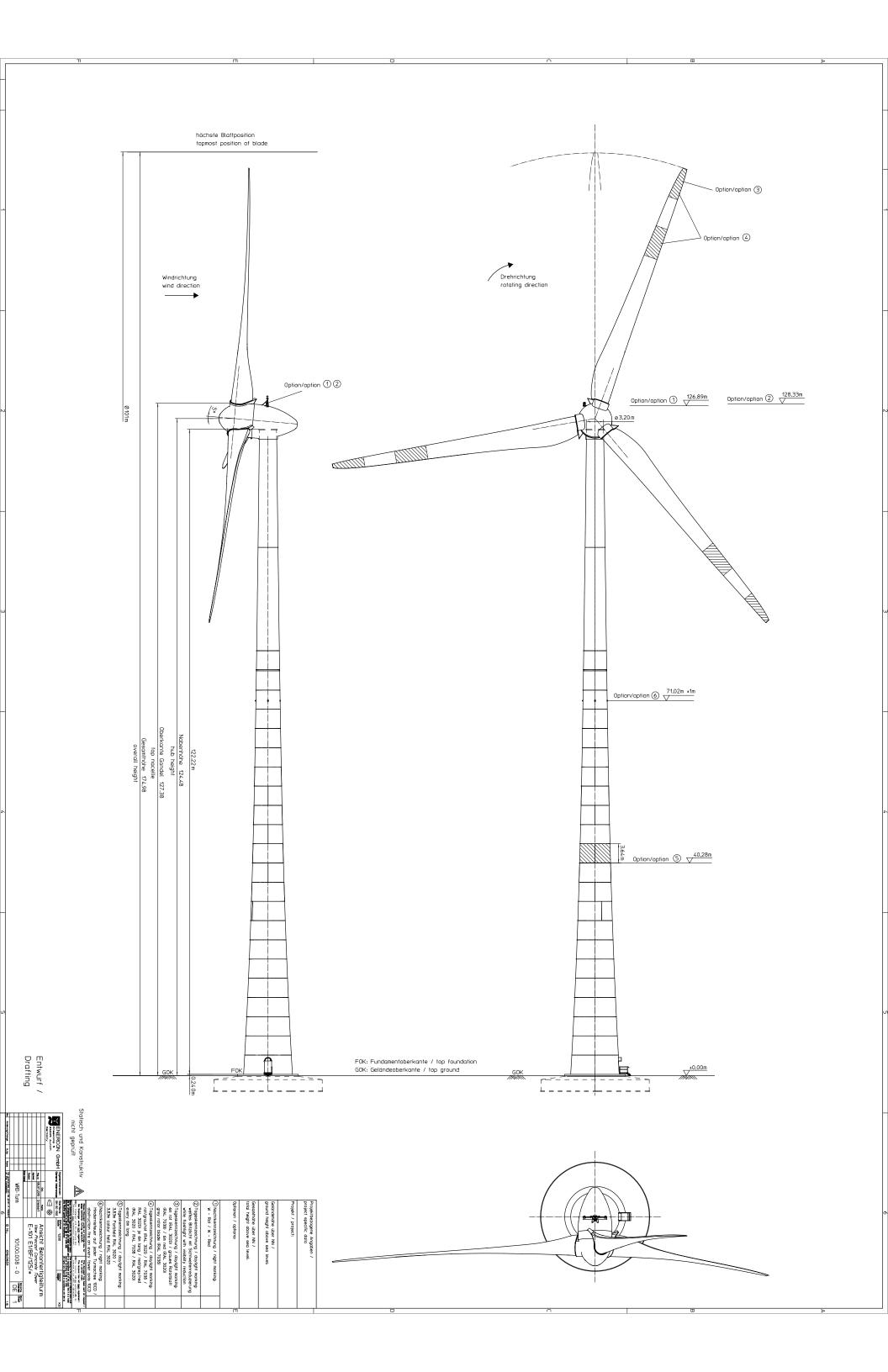
(with ENERCON storm control*)

Remote monitoring: ENERCON SCADA

 $\ensuremath{^{\star}}\xspace For more information on the ENERCON storm control feature,$

please see the last page.

Main carrier


Yaw drive

Annular generator

Blade adapter

Rotor hub

Rotor blade

ENERCON

WEC Characteristics E-101

page 1 of 1

WIND ENERGY CONVERTER CHARACTERISTICS E-101

Rotor							
Туре	E-101						
Rotor diameter	101 m						
Swept area	8012 m ²						
Power regulation	Pitch						
RPM	4 –14,5 min ⁻¹						
Cut in wind	2,5 m/s						
Cut out wind	28 – 34 m/s						
Survival wind speed	59,5 m/s						

Gear Box	
Not applicable	No gearbox

Blades	
Manufacturer	ENERCON
Blade length	48,5 m
Material	GRP (Epoxy)
Lightning protection	included

Generator	
Manufacturer	ENERCON
Nominal Power	3000 kW
Type (model)	Synchronous, direct-drive ringgenerator
Protection classification	IP 23
Insulation class	F

Yaw System	
Туре	electrical motors
Yaw control	Active (based on wind vane signal)
Yaw rate	0,5°/sec

Controller	
Manufacturer	ENERCON
Туре	microprocessor
Grid connection	Via ENERCON inverter
Remote communication	ENERCON Remote Monitoring System
UPS	included

Braking System	
Aerodynamic brake	 three independent blade pitch systems with emergency supply rotor brake rotor lock, locking at 30°

Tower			
Hub heights	99 m	135 m	
Tower	Prefab concrete	Prefab concrete	
Design Wind Class	IIA	IIA	

Sources: Design Assessment

© by ENERCON GmbH. All	rights reserved.		
Created/Date:	M. Lüninghöner	Checked:	AH/09/2009
Dpt.:	ŠL_HB	Approved:	SL_HB_WEC Characteristics_E-101_Rev001_eng-
Revision:	001/31.03.2010	Reference:	eng.doc

Prevention

All mechanical and electrical components of the wind energy converter in which overheating or short circuits could potentially ignite a fire are permanently monitored by sensors – primarily to ensure their proper functioning – while the WEC is running. If the WEC control system detects irregularities, the wind energy converter stops or continues with limited power. This function is the most effective component of the fire safety system.

Components

Special fire safety components of the E-70 E4 include:

- One Hekatron ORS 142 smoke detector (see appendix for data sheet) on the rotor head side of the stator support ring
- One Hekatron ORS 142 smoke detector on the machine house side of the stator support ring
- One Hekatron ORS 142 smoke detector on the bottom side of the main carrier (i.e., at the tower top)
- One hand-held CO₂ fire extinguisher in the nacelle
- If required by national regulations, one hand-held CO₂ fire extinguisher in the tower base (ENERCON personnel carry an additional fire extinguisher in their Service vehicles)
- Fire retardant or hardly inflammable or incombustible materials for specific components.

No smoke detectors are installed inside the tower and in the tower base. Since the WEC cooling system transports air from the tower base to the area above the tower top at high speed, the smoke detectors in the nacelle are able to detect a fire in the tower or the tower base.

Safe stopping of the wind energy converter in hazardous situations

The emergency pitch unit of each rotor blade consists of blade relay box, capacitor box, and pitch motor. If a safety-relevant sensor reports a fault or a safety switch is triggered, the wind energy converter stops immediately. The pitch control boxes disconnect the pitch motors from the control system and switch the contactors in the blade relay boxes to power supply by the capacitor boxes. The rotor blades automatically move into feathered position independently of each other until switched off by limit switches on the blade bearings. In case of an emergency stop of the rotor (in the event of a fire) an additional electromechanical brake is used. Decelerating the rotor from its rated speed to a standstill takes 10 to 15 seconds.

D0190722-1 / DA 1 of 2

Fire during WEC operation

There are no persons present in the wind energy converter while it is running. If a fire is detected the rotor of the WEC stops as quickly as possible (emergency stop). The smoke detectors and/or temperature sensors generate signals that are immediately forwarded by the SCADA remote monitoring system to ENERCON Service, who in turn will immediately alert the local fire service and the utility operating the grid. They decide on site which measures are required. The ENERCON Service Center is staffed 24/7 and can thus be contacted at any time

Fire while persons are present

In this scenario, follow the instructions and rules of conduct below.

- Stop the wind energy converter and turn off the main switch, if still possible. Otherwise, push the EMERGENCY STOP button.
- Call the fire service.
- Rescue any injured persons from the danger zone and ensure first aid is provided.
- Use carbon dioxide fire extinguishers to fight the fire; follow the operating instructions of the fire extinguishers. Only try to fight the fire if you can do so without putting your own safety at risk and if the escape route is clear.
- If the fire cannot be extinguished immediately, do not continue fire fighting efforts. Evacuate the wind energy converter and any ancillary buildings, and leave the WEC. Cordon off a wide area around the WEC.
- If it is no longer possible to descend safely in the tower, climb up into the nacelle and use rescue equipment (abseiling device) to leave the nacelle through the winch hatch.
- Notify the technical manager of the relevant utility company.
- Clear access roads for emergency services.
- Notify ENERCON Service.

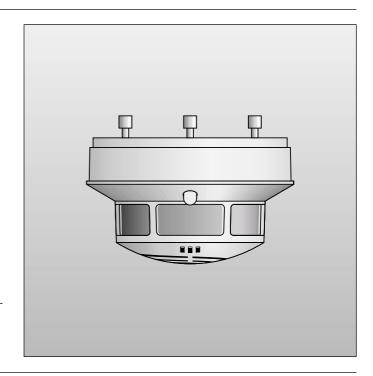
If the *Maintenance* status has been activated during service work on the wind energy converter, any signals generated by smoke detectors and other sensors are **not** transmitted to ENERCON Service.

Maintenance

In the event of a SCADA system fault a corresponding message is sent to the ENERCON Service Center that will then initiate troubleshooting measures at once. The smoke detectors and the SCADA system are inspected in the setting of the annual electrical maintenance. Inspection and maintenance of fire extinguishers is performed in accordance with national regulations.

D0190722-1 / DA 2 of 2

Optischer Rauchschalter ORS 142


- optische Raucherkennung
- Verschmutzungsanzeige
- Alarmschwellennachführung
- kommunikationsfähig
- Meßkammerüberwachung
- potentialfreier Öffner

Détecteur de fumée optique ORS 142

- détection de fumée optique
- indicateur de colmatage
- correction du seuil d'alarme
- communication
- surveillance par chambre de mesure
- contact d'ouverture exempt de potentiel

ORS 142 optical smoke switch

- Optical smoke detection
- Contamination warning
- Auto contamination compensati-
- Communications capability
- Sensing chamber monitoring
- NC volt-free contact

Der optische Rauchschalter ORS 142 erkennt frühzeitig sowohl Schwelbrände als auch offene Brände mit Rauchentwicklung.

Ein zusätzlicher Temperaturfühler spricht bei einer Umgebungstemperatur von 70 °C an.

Er wird vorzugsweise in Feststellanlagen und maschinellen Rauchabzugsanlagen eingesetzt. Der ORS 142 löst den bisherigen Rauchschalter ORS 132 ab.

Le détecteur de fumée optique ORS 142 décèle rapidement aussi bien les feux couvants que les feux déclarés avec émission de fumée.

Un capteur thermique supplémentaire se déclenche automatiquement à partir d'une température ambiante de 70°C.

Ce dispositif s'utilise de préférence pour les contrôles automatiques des portes et systèmes de désenfumage mécaniques

The ORS 142 optical smoke switch reacts promptly to smouldering fires as well as to flaming fires that develop smoke. An additional temperature sensor is triggered at an ambient temperature of 70 °C Its principal application is for door

holder/closer systems and powered smoke ventilation systems.

Der ORS 142 arbeitet nach dem Streulichtprinzip. Lichtsender und empfänger sind in der Meßkammer so angeordnet, daß das Licht des Senders den Empfänger nicht direkt trifft. Erst das an Schwebeteilen gestreute Licht gelangt zum Empfän-

Die Auswerteelektronik des ORS 142 überwacht den Rauchmeßteil des Melders zusätzlich auf leichte Verschmutzung, starke Verschmutzung und Störung (Meßkammerausfall). Die jeweiligen Betriebszustände zeigt der ORS 142 optisch an. Eine Langzeit-Alarmschwellennach-

führung sorgt für einen gleichbleibenden Abstand zwischen Grundsignal und Alarmschwelle, bis der Grenzwert für starke Verschmutzung erreicht ist.

Ein Relaiskontakt öffnet bei Alarm sowie bei Spannungsausfall.

Kommunikation

Der ORS 142 meldet seinen Funktionszustand über Stift 3 an eine RZA 142 (Rauchschalter-Zustandsanzeige). Hier werden ebenfalls die Zustände mit farbigen LEDs optisch angezeigt.

Wird der ORS 142 an ein RSI (Rauchschalter-Interface) angeschlossen, können die Melderzustände mit einem PC abgefragt werden. Mit einem Modem können RSI und PC über eine Postleitung kommunizieren.

DIBt-Zulassungen für:

Feststellanlagen Z-6.5-1571 Z-6.5-1725

maschinelle Rauchabzugsanlagen Z-78.5-15 L'ORS 142 fonctionne sur le principe de la lumière diffuse. L'émetteur et le récepteur de lumière sont positionnés dans la chambre de mesure de manière que la lumière provenant de l'émetteur ne parvienne pas directement au récepteur, mais seulement sous forme de lumière diffusée sur les particules en suspension.

L'unité d'évaluation électronique de l'ORS 142 surveille le dispositif de mesure de fumée du détecteur afin de déceler l'encrassement, faible ou important, ainsi que les pannes (défaillances de la chambre de mesure). Les états de fonctionnement de l'ORS 142 sont signalés de manière optique. Le dispositif de correction du seuil d'alarme assure un écart constant entre le signal de base et le seuil d'alarme, et ceci jusqu'à ce que la valeur limite d'encrassement important soit atteinte.

Un contact de relais s'ouvre en cas d'alarme ou d'absence de courant.

Communication

L'ORS 142 signale son état de fonctionnement au niveau de l'ergot 3 de l'indicateur de fonctionnement RZA 142. Des DEL de couleur signalent également les états de fonctionnement de manière optique. Lorsque l'ORS 142 est branché sur une interface de détecteur de fumée, il est possible de vérifier l'état de fonctionnement du détecteur à partir d'un PC. A l'aide d'un modem, l'interface et le PC peuvent communiquer par une ligne téléphonique.

switch status indicator, whose coloured LEDs give an additional remote optical indication of the instrument's condition. If the ORS 142 is linked to an RSI

The ORS 142 operates on the light

scatter principle. Inside the sensing

chamber a light source and a light

sensor are arranged so that the light

normally does not fall on the sensor.

The ORS 142 electronic circuitry also

monitors the smoke detection system

for slight contamination (dust and

dirt build-up), heavy contamination

and faults (sensing chamber failure).

LEDs provide an optical indication of

the operating status of the ORS 142.

A long-term compensation function

automatically maintains a constant

signal and the alarm threshold, until

a set limit indicating heavy contami-

A relay contact opens in the alarm

The ORS 142 signals its functional

status via pin 3 to an RZA 142 smoke

condition or on power failure.

nation is reached.

Communications

difference between the quiescent

It is only when airborne particles

enter the chamber that light is

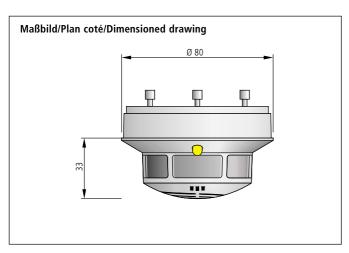
scattered onto the sensor.

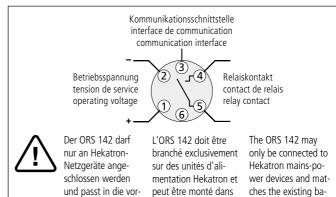
smoke switch interface, detector status can be scanned from a PC. The RSI and the PC can also communicate over a telecommunications line.

Homologations DIBt pour:

Équipements coupe-feu Z-6.5-1571 Z-6.5-1725

Systèmes de désenfumage mécaniques Z-78.5-15


DIBt approvals for:


Z-6.5-1571 Hold-open systems Z-6.5-1725

Powered smoke

ventilation systems Z-78.5-15 Technische Daten/Caractéristiques techniques/Technical data

nach/selon/to EN 54, Teil 7	Rauch	Fumée	Smoke
70 °C	Temperatur	Température	Temperature
18 bis/à/to 28 VDC	Betriebsspannung	Tension de service	Operating voltage
	Stromaufnahme bei 28 V_	Consommation pour 28 V_	Current draw at 28 V DC
max. 21 mA	in Ruhe	au repos	quiescent
max. 10 mA	bei Alarm	en cas d'alarme	in alarm
max. 25 mA	bei Störung	en cas de défaillance	in fault
Öffner/contact d'ouverture/NC	Relaiskontakte	Contacts de relais	Relay contact
max. 30 VDC	Schaltspannung	Tension d'enclenchement	switched voltage
max. 1 A	Schaltstrom	Courant d'enclenchement	switched current
max. 30 W	Schaltleistung	Puissance de rupture	switched power
IP 42	Schutzart	Indice de protection	Ingress protection
-20 bis/à/to +80 °C	Betriebsumgebungstemperatur	Température ambiante d'exploitation	Ambient operating temperature
120 g	Gewicht	Poids	Weight

type 143.

les socles existants du

ses type 143.

handene Sockelserie

143.

Relais/Relais/Relay		Einzelanzeige/Af individuel/LED	fichage
Betrieb en service in operation	4 5 5	grün/vert/green	
leicht verschmutzt légèrement encrassé slight contamination	0 4	grün/vert/green gelb/jaune/yellow	
stark verschmutzt encrassé heavy contamination	4 5 5	grün/vert/green gelb/jaune/yellow	
Störung défaillance fault	3 4 5 5	gelb/jaune/yellow	
Alarm alarme alarm	5	rot/rouge/red	
spannungslos hors tension power off	5	dunkel/sombre/darl	<

		Technische Änderungen sowie Liefermög- lichkeiten vorbehalten.	Sous réserve de modifications techniques ainsi que de possibilités de livraison.	Specifications subject to change without notice. Delivery subject to availability.
		andere Farben auf Anfrage	autres couleurs sur demande	other colours on request
5 000 552	ORS 142	Rauchschalter, weiß nach RAL 9010	Détecteur de fumée, blanc RAL 9010	Smoke switch, white (DIN shade RAL 9010)

 Brühlmatten 9

 D-79295 Sulzburg

 www.hekatron.de
 Telefon (07634) 500-264

 info@hekatron.de
 Telefax (07634) 500-323

A member of the Swiss Securitas Group

Sicherheitssysteme

ENERCON

WEC Characteristics E-101

page 1 of 1

WIND ENERGY CONVERTER CHARACTERISTICS E-101

Rotor	
Туре	E-101
Rotor diameter	101 m
Swept area	8012 m ²
Power regulation	Pitch
RPM	4 –14,5 min ⁻¹
Cut in wind	2,5 m/s
Cut out wind	28 – 34 m/s
Survival wind speed	59,5 m/s

Gear Box	
Not applicable	No gearbox

Blades	
Manufacturer	ENERCON
Blade length	48,5 m
Material	GRP (Epoxy)
Lightning protection	included

Generator	
Manufacturer	ENERCON
Nominal Power	3000 kW
Type (model)	Synchronous, direct-drive ringgenerator
Protection classification	IP 23
Insulation class	F

Yaw System	
Type	electrical motors
Yaw control	Active (based on wind vane signal)
Yaw rate	0,5°/sec

Controller	
Manufacturer	ENERCON
Type	microprocessor
Grid connection	Via ENERCON inverter
Remote communication	ENERCON Remote Monitoring System
UPS	included

Braking System	
Aerodynamic brake	 three independent blade pitch systems with emergency supply rotor brake rotor lock, locking at 30°

Tower			
Hub heights	99 m	135 m	
Tower	Prefab concrete	Prefab concrete	
Design Wind Class	IIA	IIA	

Sources: Design Assessment

© by ENERCON GmbH. All r	ights reserved.		
Created/Date:	M. Lüninghöner	Checked:	AH/09/2009
Dpt.:	ŠL_HB	Approved:	SL_HB_WEC Characteristics_E-101_Rev001_eng-
Revision	001/31.03.2010	Reference	eng.doc

E-101/BF/133/27/01 Flat Foundation without Buoyancy Seite/Page 1 von/of 4

FUNDAMENT-DATENBLATT FOUNDATION DATA SHEET

E-101/BF/133/27/01

WZ III (DIBt- Richtlinie Fassung 2004, Anhang B) WZ 4; GK I (DIN 1055-4: 2005-03) WTC II A (IEC 61400-1, 3rd edition, 2005-08) WEA-Klasse II A (DIN EN 61400-1, 2006-07)

Bauteil:

Fundament-Flachgründung ohne Auftriebswirkung Component: Foundation - Flat Foundation without Buoyancy

8107894074-7 FI Reviewed

TÜV NORD SysTec GmbH & Co. KG

2 O. APR. 2011

This document has been forwarded upon request or with regard to a specific order. The recipient has not been registered. The recipient will not be automatically notified about any amendments.

Any copying and disclosure to third parties require the permission of ENERCON GmbH.

Document information:		© Copyright ENERCON GmbH. All rights reserved.		
Author/ date:	MFE / 2011-02-09			
Department:	WRD-K	Translator / date	e:	-
Approved / date:	TE / 2011-02-09	Revisor / date:		-
Revision / date:	MFE 1 / 2011-03-14	Reference:	WRD-K-04-FDB-FEB-E-101_BF_133_27_01-Rev_1-EN	

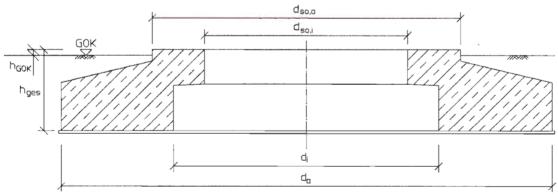
E-101/BF/133/27/01 Flat Foundation without Buoyancy

Seite/Page 2 von/of 4

1.0 General information

Design-specific structural analysis:

Structural calculation by ENERCON GmbH,


E-101/BF/133/27/01

Flat foundation without buoyancy – Ø 20.90 m

Revision 1 - 14.03.2011

2.0 Foundation dimensions

Outer diameter	da	20.90 m
Inner diameter	d _i	11.20 m
Base diameter – outside	d _{so,a}	13.50 m
Base diameter – inside	$d_{so,i}$	8.50 m
Foundation height	h _{ges}	3.10 m
Base height	h _{so}	0.40 m
Spur incline height	h _n	0.60 m
Spur height	h _{sp}	2.10 m
Difference between foundation top edge and ground level	h _{gok}	0.20 m
Concrete quality and volume	C 30/37	677 m³
Reinforcement steel and weight	B 500B	68.6 t

Document information:

Author/ date: Department: Approved / date: Revision / date:

© Copyright ENERCON GmbH. All rights reserved.

MFE / 2011-02-09 WRD-K

TE / 2011-02-09 MFE 1 / 2011-03-14 Reference:

Translator / date: Revisor / date:

E-101/BF/133/27/01 Flat Foundation without Buoyancy Seite/Page 3 von/of 4

3.0 Minimum rocking spring stiffness

Observe the following minimum values with regard to elastic clamping between foundation and

Total system	kφ,stat 15000 [MNm/rad]	
(tower and foundation)	kφ,dyn 150000 [MNm/rad]	

The resulting required dynamic stiffness moduli (E_{oed,dyn}) depend on the foundation dimensions and Poisson's ratio.

Equivalent radius of a circle with the same stiffness:

$$r = 10.23 \text{ m}$$

The following applies to circular foundations:

$$k_{\varphi} = \frac{8 \cdot G \cdot r^3}{3 \cdot (1 - v)}$$

This means that

$$\mathbf{E}_{\mathsf{oed},\mathsf{dyn}} = \mathbf{k}_{\varphi} \cdot \frac{3}{4} \cdot \frac{1}{\mathbf{r}^3} \cdot \frac{(1+\mathbf{v}) \cdot (1-\mathbf{v})^2}{1-\mathbf{v}-2 \cdot \mathbf{v}^2} \text{ where } \mathbf{G} = \text{shear modulus}$$

$$\mathbf{r} = \text{radius}$$

$$\mathbf{v} = \text{Poisson's ratio}$$

4.0 Allowed inclination

Maximum allowed inclination due to subsoil settlement within 20 years, related to the outer diameter.

5.0 Soil bearing pressure

The in-situ subsoil must be able to bear a minimum pressure of $\sigma_{k,vorh}$ = 401 kN/m².

Document information:

© Copyright ENERCON GmbH. All rights reserved.

Author/ date: Department: Approved / date: Revision / date:

MFE / 2011-02-09 WRD-K TE / 2011-02-09

Translator / date: Revisor / date:

MFE 1 / 2011-03-14 | Reference:

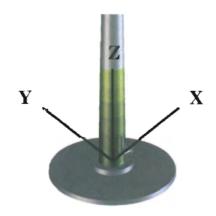
E-101/BF/133/27/01 Flat Foundation without Buoyancy Seite/Page 4 von/of 4

6.0 Loads at the bottom edge of the foundation

The F_Z loads indicated include the dead weight of the foundation γ = 25 kN/m³ and soil weight γ = 18 kN/m³ when dry.

6.1 Characteristic load cases

Load case	(γ _{aero} /γ _{mass})	F _{xy} [k N]	F _z [kN]	M _{xy} [kNm]	M _z [kNm]
DLC 1.0	(1.00/1.00)	1100	-36707	103954	-
DLC 3.2	(1.00/1.00)	1470	-36790	153801	-8420
DLC 6.2	(1.00/1.00)	1700	-36590	189565	-8590


Loads do not include partial safety factor ($\gamma_F = 1.0$)

6.2 Load case design values

Load case	(γ _{aero} /γ _{mass})	F _{xy} [kN]	F _z [kN]	M _{xy} [kNm]	M _z [kNm]
DLC 3.2	(1.35/1.35)	2110	-49067	217115	-11600
DLC 3.2	(1.35/1.00)	2110	-36808	217115	-11600

All loads include partial safety factors

7.0 Coordinate system

Document information:

Author/ date: Department: Approved / date: Revision / date: © Copyright ENERCON GmbH. All rights reserved.

MFE / 2011-02-09

WRD-K

TE / 2011-02-09 Revisor / date: MFE 1 / 2011-03-14 Reference:

Translator / date:

Gewichte / Weights E-101

In der folgenden Tabelle sind die Gewichte der Transport- und Aufbaueinheiten der E-101 angegeben. Es ist zu beachten, dass es sich dabei um ca.-Angaben handelt. Bei den Einzelgewichten sind jeweils die notwendigen Transport- und Aufbauvorrichtungen berücksichtigt, das angegebene Gondelgesamtgewicht entspricht der Turmkopfmasse nach Fertigstellung der Anlage.

In the following table the weights of the transport and installation component-assemblies of the E-101 are given. It is to be noted that the values are approximated. The weights include the necessary transport and installation devices, the given value for overall nacelle weight corresponds to the tower head mass after completion of the turbine.

Transport	Transport		
Rotorblatt mit HKS	Rotor blade with fin	ca. 21,0	t
3x HKS	3x Fin	ca. 2,4	t
Rotornabe	Rotor hub	ca. 50,0	t
Generator	Generator	ca. 83,0	t
Gondel (Maschinenträger etc.)	Nacelle (main carrier etc.)	ca. 59,0	t
Aufbau	Installation		
Rotornabe (incl. Rotorblätter)	Rotor hub (incl. rotor blades)	ca.115,0	t
Generator	Generator	ca. 84,0	t
Generator-Stator	Generator stator	ca. 52,0	t
Generator-Rotor	Generator rotor	ca. 35,0	t
Gondel (Maschinenträger etc.)	Nacelle (main carrier etc.)	ca. 59,0	t
Gondelgesamtgewicht	Overall nacelle weight	ca.255,0	t

Erstellt/Datum: Freigegeben/Datum: Socher, S. / 2012-02-23 W. Fricke / 2012-04-03 Werk/Abteilung:

WRD / Konstruktion Maschinenbau

Sound Power Level E-101

Page **1 of 2**

Sound Power Level of the ENERCON E-101 3.0 MW

Publisher:

ENERCON Canada Inc. 1000, rue de La Gauchetière ouest Bureau 2310 Montréal, QC, H3B 4W5 +1 514 ENERCON (+1 514 363 7266)

Copyright:

© ENERCON Canada Inc. Any reproduction, distribution and utilisation of this document as well as the communication of its contents to third parties without express authorisation is prohibited. Violators will be held liable for monetary damages. All rights reserved in the event of the grant of a patent, utility model or design.

Content subject to change:

ENERCON Canada Inc. reserves the right to change, improve and expand this document and the subject matter described herein at any time without prior notice.

Author/date:	H.Shahriar /15.06.12	Translator/date:	N.Nnnn / DD.MM.YY
Department:	Sales	Revisor/date:	H.Shahriar / 28.05.13
Approved/date:	E. DeGroot/29.05.13	Reference:	Annex 12 Sound Power Level E-101d
Released/date:	H.Shahriar /29.05.13		

Sound Power Level E-101

Page 2 of 2

The following represents the maximum sound power level of the E-101 3.0 MW for the entire operational range of wind speeds in accordance with the measurement technique IEC 61 400 – 11:2002 and A1:2006.

Sound Power Level for the E-101 with 3.0 MW rated power

Hub Height	124m	135m
95% rated power	104.8 dB(A)	104.8 dB(A)

- 1. A tonal audibility of $\Delta L_{a,k} \le 2$ dB can be expected over the whole operational range and is valid in the near vicinity of the turbine according to IEC 61 400 -11 ed. 2.
- 2. Sound power level values provided in the table are valid for the **Operational Mode I**. The respective power curve is the calculated power curve E-101 dated October 2009 (Rev 2.0).
- 3. Due to typical measurement uncertainties, if the sound power level is measured according to the accepted method, the measured values can differ from the values shown in this document in the range of +/- 1dB.

Accepted measurement method:

IEC 61400-11 ed.2 ("Wind turbine generator systems – Part 11: Acoustic noise measurement techniques; Second edition, 2002 – 12").

If the difference between tonal noise and background noise during a measurement is less than 6 dB, a higher uncertainty must be considered.

4. The sound power level of a wind turbine depends on several factors such as, but not limited to, regular maintenance and day-to-day operation in compliance with the manufacturer's operating instructions. Therefore, this data sheet cannot, and is not intended to, constitute an express or implied warranty towards the customer that the E-101 WEC will meet the exact sound power level as shown in this document at any project specific site.

Author/date:	H.Shahriar /15.06.12	Translator/date:	N.Nnnn / DD.MM.YY
Department:	Sales	Revisor/date:	H.Shahriar / 28.05.13
Approved/date:	E. DeGroot/29.05.13	Reference:	Annex 12 Sound Power Level E-101d
Released/date:	H.Shahriar /29.05.13		

Summary of Test Report (Measured hub height of 99 m) /1/

Master Data Sheet "Geräusche" (Noise), in accordance with

"Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte" (Technical Guidelines for Wind Turbine Generators, Part 1: Determination of sound emission values)

Rev. 18 of February 1, 2008 (Editor: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel)

Extract of Test Report 213122-02.01 IEC

on noise emission of wind turbine generator of type E-101 Technical Data (manufacturer's specifications) **General Data** Manufacturer of WTG: Enercon GmbH Rated power (generator): 3,050 (3,250) kW 1010002 101 m Serial number: Diameter of rotor: Location of WTG (approx.): 49733 Haren Hub height above ground: 99 m Geographic co-ordinates: GK longitude: 25.76.214 Type of tower: conical tubular concrete GK latitude: 58.59.856 Power control: Pitch Complementary rotor data Complementary data of gear unit and generator (manufacturer's specifications) (manufacturer's specifications) Manufacturer of rotor blade: Enercon Manufacturer of gear unit: not applicable Type of rotor blade: E-101-1 Type of gear unit: not applicable Blade setting angle: variable Manufacturer of generator: Enercon Number of rotor blades: Type of generator: G-101/30-G2 5 to 14.7 rpm. (mode OM I) 5 to 14.7 rpm. (mode OM I) Rotor speed range: Rated speed of generator:

Calculated Performance Chart: Performance characteristic E101 3 MW OM I; calculated by ENERCON (Rev. 1.0)

	Calculate	uic	11011116	ince Chart.					S MW OM I ;	calci	uiaicu	by LIVLING	ON (INEV.	1.0)		
					Refe			int			Noi	se emiss	ion	OI		
			st	tandardize a heig	d wind sp tht of 10 m		at	true elec	trical powe	er	p	arameter	s	Observations		
				6 ו	ns ⁻¹			1,4	14 kW		10	03.6 dB(<i>A</i>	١)			
				7 ו	ns ⁻¹			2.07	77 kW			04.3 dB(<i>A</i>				
sound power	r level L _w	A.P		8 1	ns⁻¹			2.75	51 kW			04.8 dB(<i>A</i>				
•		,.		9 ו	ns ⁻¹				37 kW			04.6 dB(<i>A</i>			(1))
				10 ו	ns ⁻¹				50 kW				,		(2)	
				6 1	ns ⁻¹				14 kW			- 1.5 dB				
				7 ו	ns ⁻¹				77 kW			0 dB				
tonal audibili	ty ∍L _{a,k}			8 1	ns ⁻¹				51 kW			0 dB				
				9 ו	ns ⁻¹				37 kW			0 dB			(1))
				10 ו	ns ⁻¹				50 kW						(2)	
				6 ו	ns ⁻¹				14 kW			0 dB				
	4 4	.		7 ı	ns ⁻¹				77 kW			0 dB				
impulse adj				8 ו	ns ⁻¹			2,75	51 kW			0 dB				
immediate vi	CITILY KIN			9 ı	ns ⁻¹			2,98	37 kW			0 dB		(1)		
				10 ı	ns ⁻¹			3,050 kW						(2)		
Third-octave	band sou	nd p	owe		for v _s =	6 ms	¹ in d	B(A)		•			•			
Frequency	50	(63	80	100	1	25	160	200	250		315	400	5	00	630
$L_{WA,P}$	78.3	8	1.8*	83.0**	84.2	8	9.6	85.7*	89.2	92	2.7	94.1	94.6	9	5.1	94.9
Frequency	800	,	000	1,250	1,600		000	2,500	3,150		000	5,000	6,300	- ,	000	10,000
$L_{WA,P}$	93.5		1.6	90.0	89.0		5.4	84.1	82.3	79	9.3	74.8	67.8*	64	.7**	65.3**
Octave band		wer	level		for $v_s = 6$		in dl									
Frequency	63			125	250		-	500	1,000	1		2,000	4,00			8,000
L _{WA,P}	85.6*			91.9	97.2			99.6	96.7			91.5	84.	ь		70.3*
Third-octave					for $v_s = 7$				000			045	400		20	000
Frequency	50 78.9		3.3	80 84.0	84.9	100 125 84.9 88.2		160 86.4*	200 89.6		50 4.7	315 94.9	400 95.4		00 5.8	630 95.5
L _{WA,P} Frequency	800		000	1,250	1,600		000	2,500	3,150		+. <i>1</i> 000	5,000	6,300		-	10,000
L _{WA,P}	94.0		2.0	90.4	89.3	86		84.7	82.9		9.9	74.4*	68.4*			62.7**
Octave band					for $v_s = 7$						-					
Frequency	63			125	250		42	500	1,000			2,000	4,00	00		8,000
L _{WA,P}	87.3			91.5	98.4			100.3	97.1			91.9	85.0			71.5**

Third-octave	band sou	ind powe	er level	for $v_s = 8$	ms ⁻¹ i	in dB	(A)							
Frequency	50	63	80	100	100 125		160	200 25		315	400	500		630
$L_{WA,P}$	82.1	82.8	84.4	88.4	86.8		90.1	94.8	95.0	95.6	96.3	96	.2	82.1
Frequency	800	1,000	1,250	1,600	2,0	000	2,500	3,150	4,00	5,000	6,300	8,0	00	10,000
$L_{WA,P}$	95.0	93.3	91.5	90.4	86	6.7	85.4	83.7	80.9	75.9	69.7*	67.	1**	65.5**
Octave band	sound po	wer leve	el	for $v_s = 8$	ms⁻¹ i	in dB	(A)							
Frequency	63		125	250			500	1,000)	2,000	4,000) ;		3,000
$L_{WA,P}$	86.3		91.6	98.6		100.8		98.3		92.8	86.0	7		73.3**
Third-octave	band sou	ind powe	er level	for $v_s = 9$	ms ⁻¹	in dE	S(A)							
Frequency	50	63	80	100	12	25	160	200 250		315	400		00	630
$L_{WA,P}$	78.6	81.9	82.4*	83.9	87	7.8	85.9*	88.6	93.8	94.2	95.1	96	.0	96.3
Frequency	800	1,000	1,250	1,600	2,0	000	2,500	3,150	4,00	5,000	6,300	8,0	00	10,000
$L_{WA,P}$	95.4	93.8	92.3	91.0	.0 87.4		86.0	84.1	81.1	76.7	71.7	68	.4	66.8*
Octave band	sound po	wer leve	el	for $v_s = 9 \text{ ms}^{-1}$ in dB(A)										
Frequency	63		125	250			500	1,000)	2,000	4,000		8,000	
$L_{WA,P}$	86.0		90.8	97.6	97.6		100.6	98.8		93.5	86.4		74.2	

This summary of the test report is valid only in combination with the manufacturer's certificate dated 12/03/2013.

These specifications do not replace the test report mentioned above (particularly for noise immission predictions).

Observations:

- (1) Maximum value of standardized wind speed during the WTG-operation measurement $v_s = 8.9 \text{ m/s}$
- (2) Due to weather conditions, no data available during WTG operation
- * Difference between working and background noise < 6 dB, correction by 1.3 dB
- ** Difference between working and background noise < 3 dB, values shall not be presented

/1/ Wind turbine generator systems – Part 11: Acoustic noise; measurement techniques (IEC 61400-11:2002 and A1:2006); German version DIN EN 61400-11:2007

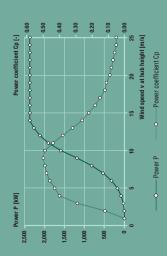
Measured by:

KÖTTER Consulting Engineers

- Rheine -

Date: 23/04/2013

Dipl.-Ing. Oliver Bunk


Matthias Humpohl, B.Sc.

CONSULTING ENGINEERS

Bonifatiusstraße 400 · 48432 Rheine
Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43

2,300 kW

Calculated power curve

	,w/6ɔ	1 225.	ı = d																						
Power coefficient Cp [-]	0.00	0.12	0.29	0.40	0.43	0.46	0.48	0.49	0.50	0.49	0.44	0.38	0.32	0.26	0.22	0.18	0.15	0.12	0.11	0.09	0.08	0.07	90.0	0.05	0.05
Power P [KW]	0.0	3.0	25.0	82.0	174.0	321.0	532.0	815.0	1,180.0	1,580.0	1,890.0	2,100.0	2,250.0	2,350.0	2,350.0	2,350.0	2,350.0	2,350.0	2,350.0	2,350.0	2,350.0	2,350.0	2,350.0	2,350.0	2,350.0
Wind [m/s]	-	2	ဇ	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

For more information on the ENERCON power curve, please see the last page.

Technical specifications E-82 E2

2,300 KW

Rated power:

Drive train with generator

- 3 independent pitch control systems Double-row tapered/cylindrical roller with emergency power supply (with ENERCON storm control*) ENERCON direct-drive annular load-dependent damping Active via yaw gear, ENERCON inverter ENERCON SCADA Rotor brake 28-34 m/s Rotor lock generator Cut-out wind speed: Remote monitoring: Brake systems: Yaw system: Main bearing: Grid feed: Generator: 78 m/85 m/98 m/108 m/138 m Upwind rotor with active pitch control ENERCON single blade pitch system; Built-in lightning protection Gearless, variable speed Single blade adjustment Variable, 6-18 rpm GRP (epoxy resin); IEC/NVN IIA Clockwise 5,281 m² MZ III Rotational direction: Rotational speed: Pitch control: Wind zone (DIBt): WEC concept: Wind class (IEC): Rotor diameter: Blade material: No. of blades: Swept area: Hub height: Rotor Type:

*For more information on the ENERCON storm control feature,

one independent pitch system per rotor blade with allocated emergency supply

please see the last page.

Annular generator

Main carrier

Yaw drive

Blade adapter

Rotor hub

Rotor blade

ENERCON

WEC Characteristics E-82 E2 2.3MW

page 1 of 2

WIND ENERGY CONVERTER CHARACTERISTICS

E-82 E2 2.3MW

Rotor	
Туре	E82 E2
Rotor diameter	82 m
Swept area	5281 m ²
Power regulation	Pitch
RPM	6 –18 min ⁻¹
Cut in wind	2,5 m/s
Cut out wind	28 – 34 m/s
Survival wind speed	59,5 m/s

Gear Box	
Not applicable	No gearbox

Blades	
Manufacturer	ENERCON
Blade length	38,8 m
Material	GRP (Epoxy)
Lightning protection	included

Generator	
Manufacturer	ENERCON
Nominal Power	2300 kW
Type (model)	Synchronous, direct-drive ringgenerator
Protection classification	IP 23
Insulation class	F

Yaw System	
Туре	6 electrical motors
Yaw control	Active (based on wind vane signal)
Yaw rate	0,5°/sec

Controller	
Manufacturer	ENERCON
Type	microprocessor
Grid connection	Via ENERCON inverter
Remote communication	ENERCON Remote Monitoring System
UPS	included

Braking System	
Aerodynamic brake	 three independent blade pitch systems with emergency supply rotor brake rotor lock, locking at 30°

© by ENERCON GmbH. All ri	ghts reserved.		
Created/Date:	M. Lüninghöner	Checked:	AH/WG 07/2009
Dpt.:	ŠL_HB	Approved:	SL_HB_WEC Characteristics_E-82 E2_2.3_Rev001_eng-
Revision:	001/23.10.2009	Reference:	eng.doc

ENERCON

WEC Characteristics E-82 E2 2.3MW

page 2 of 2

Tower					
Hub heights	78 m	85 m	98 m	108 m	138 m
Tower	Steel (4 + FS)	Steel + Prefab concrete (2 + 15)	Steel + Prefab concrete (2 + 18)	Steel + Prefab concrete (2 + 21)	Steel + Prefab concrete (2 + 21)
Design Wind Class	II	II	II	II	II

Weights	
Nacelle, excl. Rotor and hub	Approx. 18 to
Rotor incl. Hub/Main pin	Approx. 55 to
Generator	Approx. 62 to
Total Weight	Approx. 135 to

Sources: Design Assessment, Manufacturers Certificate

© by ENERCON GmbH. All ri	ghts reserved.		
Created/Date:	M. Lüninghöner	Checked:	AH/WG 07/2009
Dpt.:	ŠL_HB	Approved:	SL_HB_WEC Characteristics_E-82 E2_2.3_Rev001_eng-
Revision:	001/23.10.2009	Reference:	eng.doc

Summary of Test Report (Measured hub height of 108 m) /1/

Basic sheet "Geräusche" (*Noise*), according to the "Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte" (Technical Guidelines for Wind Energy Converters, Part 1: Determination of sound emission values)

Rev. 18 of February 1, 2008 (Editor: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel)

Extract of Test Report 209244-04.01 IEC

on noise emission of wind energy converter of type E-82 E2								
Genera	al Data	Technical Data (manufacturer's specifications)						
Manufacturer of WEC:	Enercon GmbH	Rated power (generator):	2.300 kW					
Serial number:	82679	Diameter of rotor:	82 m					
Location of WEC (ca.):	26629 Großefehn	Hub height above ground:	108 m					
Geographic co-ordinates:	GK longitude: 34.15.287	Type of tower:	conical tube tower					
- '	GK latitude: 59.14.701	Power control:	Pitch					
Complementa	any rotor doto	Complementary data of	geor unit and generator					
Complement	ary rotor data	Complementary data of	gear unit and generator					
	s specifications)	(manufacturer's	s specifications)					
•	specifications)							
(manufacturer's	specifications)	(manufacturer's	s specifications)					
(manufacturer's Manufacturer of rotor blade:	specifications) Enercon	(manufacturer's Manufacturer of gear unit:	s specifications) not applicable					
(manufacturer's Manufacturer of rotor blade: Type of rotor blade:	Enercon E-82 E2	(manufacturer's Manufacturer of gear unit: Type of gear unit:	s specifications) not applicable not applicable					

Calculated Performance Chart ENERCON E-82 E2: calculated by ENERCON (Rev. 3.0)

	Calculated Performance Chart ENERCON E-82 E2; calculated by ENERCON (Rev. 3.0)											
					ence Po	int		Nois	se emiss	ion	Observations	
		s	standardized wind speed in 10 m height			true elect	trical powe	parameters			Observ	ations
				ns ⁻¹		579 kW		9	6.4 dB(A	.)		
				ns ⁻¹		1,08	39 kW	10	00.6 dB(A	A)		
sound power	· loval I		7 r	ns ⁻¹		1,61	12 kW	10	02.5 dB(A	A)		
souria power	ievei LW	A,P	8 r	ns ⁻¹		2,03	32 kW	10	03.2 dB(A	A)		
			9 r	ns ⁻¹		2,25	55 kW	10	03.3 dB(A	A)		
			10 r	ns ⁻¹		2,30	00 kW	10	02.9 dB(<i>A</i>	A)		
			5 r	ns⁻¹		ŀ	ίW		- 2.7 dB			
				ns ⁻¹		ŀ	(W		<- 3.0 dB			
tonal audibili	tv Al .		7 r	ns ⁻¹			(W		- 1.8 dB			
torial addibili	t y Δ∟ _{a,k}		8 r	ns ⁻¹		ŀ	ίW		- 0.7 dB			
			9 r	ns ⁻¹			(W		0.2 dB			
			10 r	ns ⁻¹			(W		- 0.4 dB			
				ns ⁻¹			(W	0 dB				
				ns ⁻¹			kW 0 dB					
impulse adju		r	7 r	ns ⁻¹			(W		0 dB			
small distance	es K _{IN}		8 r	ns ⁻¹			ίW	0 dB				
				ns ⁻¹			kW 0 dB					
			10 r	ns ⁻ '		kW			0 dB			
Third-octave	band sou	nd powe	r level	for $v_s = 5$	ms ⁻¹ in d	B(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
$L_{WA,P}$	74.1	76.5*	80.0	85.6	82.2	81.7	81.9	83.7	85.6	85.1	85.5	87.6
Frequency	800	1,000	1,250	1,600	2,000	2,500	3,150	4,000	5,000	6,300		10,000
$L_{WA,P}$	86.9	86.2	84.8	82.4	78.8	75.3	70.6	65.5	60.3*	60.3*	63.0	70.3
Octave band	•	wer leve		for $v_s = 5$	ms ⁻¹ in dl							
Frequency	63		125	250		500	1,000		2,000	4,0		8,000
$L_{WA,P}$	82.3		88.3	88.8		91.0	90.8		84.5	72	.1	71.4
Third-octave	band sou	nd powe	r level	for $v_s = 6$	s ms ⁻¹ in d	B(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
$L_{WA,P}$	78.2**	79.1*	82.2	85.2	87.4	84.3	85.0	87.3	88.7	88.5*	_	93.2
Frequency	800	1,000	1,250	1,600	2,000	2,500	3,150	4,000	5,000	6,300		10,000
$L_{WA,P}$	91.7	91.5	89.9	87.1	83.0	79.4	74.4	69.0	63.5	64.4	67.4	74.3

Octave band	sound po	wer leve	el	for v _s = 6	6 ms ⁻¹ i	n dB(A)						
Frequency	63		125	250)	500	1.000	0	2.000	4.000)	8.000
L _{WA,P}	84.9	*	90.6	92.0	0	95.7	95.9	9	89.0	75.8		75.4
	Third-octave band sound power level for $v_s = 7 \text{ ms}^{-1}$ in dB(A)											
Frequency	50	63	80	100	125	160	200	250	315	400	50	0 630
L _{WA,P}	78.6**	79.8	82.7	84.8	90.	8 86.2	86.0	89.7	7 91.0	92.5	91.	7 93.9
Frequency	800	1,000	1,250	1,600	2,00	0 2,500	3,150	4,00	0 5,000	6,300	8,00	00 10,000
$L_{WA,P}$	93.4	93.3	91.8	89.2	85.	8 81.9	77.0	72.2	2 66.1	65.3	66.	.8 72.8
Octave band	sound po	wer leve	el	for v _s = 7	ms ⁻¹ in	dB(A)						
Frequency	63		125	250		500	1,000	0	2,000	4,000)	8,000
$L_{WA,P}$	85.5*	ł .	92.8	94.2		97.6	97.7	7	91.4	78.5	,	74.4
Third-octave	band sou	ınd powe	er level	for $v_s = 8$	ms ⁻¹ in	dB(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	50	0 630
L _{WA.P}	77.4*	80.4	83.1	84.9	91.	2 86.6	86.3	90.4	91.4	92.9	92.	1* 94.8
Frequency	800	1,000	1,250	1,600	2,00	0 2,500	3,150	4,00		6,300	8,00	00 10,000
$L_{WA,P}$	94.2	94.1	92.6	90.1	86.	7 82.7	77.8	73.3	67.7	65.8	66.	6 71.4
Octave band	sound po	wer leve	el	for v _s = 8	ms ⁻¹ in	dB(A)						
Frequency	63		125	250		500	1,000	0	2,000	4,000)	8,000
L _{WA,P}	85.6		93.2	94.6	i	98.2	98.5	5	92.2	79.4		73.4
Third-octave	band sou	ınd powe	er level	for v _s = 9	ms ⁻¹ ii	n dB(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	50	0 630
L _{WA,P}	78.5	81.4	83.9	85.7	92.	6 88.2	86.4	90.2	2 90.7	91.8	91.	5* 93.9
Frequency	800	1,000	1,250	1,600	2,00	0 2,500	3,150	4,00	0 5,000	6,300	8,00	00 10,000
$L_{\text{WA},P}$	94.0	94.4	93.4	91.5	88.	4 84.6	79.9	75.4	4 69.3	65.5*	66.	4 71.5
Octave band	sound po	wer leve	el	for $v_s = 9$	ms ⁻¹ in	dB(A)						
Frequency	63		125	250		500	1,000	0	2,000	4,000)	8,000
$L_{WA,P}$	86.6		94.6	94.3		97.3*	98.7	7	93.8	81.5	;	73.4
Third-octave	band sou	ınd powe	er level	for v _s = 1	0 ms ⁻¹	in dB(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	50	0 630
L _{WA,P}	78.8	81.7	84.5	86.3	92.	4 88.5	86.4	89.8	3 90.0*	91.2	90.	9* 92.7*
Frequency	800	1,000	1,250	1,600	2,00	0 2,500	3,150	4,00	0 5,000	6,300	8,00	00 10,000
$L_{WA,P}$	93.3	93.9	93.3	91.5	88.	8 85.2	80.7	76.	71.9	70.4	68.	5 71.8
Octave band	sound po	wer leve	el	for v _s = 10) ms ⁻¹ i	n dB(A)						
-	00		125	250		500	1,000	n	2,000	4,000	1	8,000
Frequency	63		120	250		300	1,000	U	2,000	4,000	,	0,000

This summary of the test report is valid only in combination with the certification of the manufacturer of 03/05/2010.

These specifications do not replace the test report mentioned above (particularly for noise immission predictions).

Observations:

- * Difference between working and background noise < 6 dB, correction by 1.3 dB
- ** Difference between working and background noise < 3 dB, values shall not be presented

/1/ Wind turbine generator systems – Part 11: Acoustic noise; measurement techniques (IEC 61400-11:2002 and A1:2006); German version DIN EN 61400-11:2007

Measured by:

KÖTTER Consulting Engineers

- Rheine -

Date: 08/02/2010

O. Bel jign Winduis i. V. Dipl.-Ing. O. Bunk i. A. Dipl.-Ing. J. Weinheimer

Stantec

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix F Additional Information February 05, 2016

ADJACENT WIND FARM

Siemens states in an email (Youmans, 2011), "The enclosed noise test report [Windtest, 2005] for the SWT 2.3-93 has been used on other applications to demonstrate the lack of any tonal characteristics. A similar report will be issued for the SWT 2.3-101 in the near future, but in the meantime this report has been accepted for proof of tonality since both units share common gearbox, generator, and converter systems."

Uncertainty in the tonal analysis is mentioned in section 3.6.3 ("Tonality") of the Windtest (2005) report.

No tonal penalty has been applied to this turbine.

The 10 m broadband and octave band source sound power levels for the Siemens SWT-2.221-101 turbine under its power-reduced operation protocol for a hub height of 99.5 m are shown in Table 1. Note that the 'Manufacturer's emission levels' were only provided for 6 and 8 ms⁻¹. For 7-ms⁻¹, octave band SPoLs have been interpolated; the 9 and 10-ms⁻¹ SPoLs have been set equal to the 8-ms⁻¹ SpoLs.

Table 1 Siemens SWT-2.221-101 — Wind turbine acoustic emissions summary.

Make and Model:	ake and Model: Siemens SWT-2.221-101											
Rating: 2,221 kW	ating: 2,221 kW											
Hub height (m): 99	lub height (m): 99.5											
Vind profile adjustment: summer night-time power-law wind shear coefficient = 0.45												
	Octave band sound power level (dB)											
	Manuf	acturer's o	emission le	evels (10 r	n a.g.l)	Adj	usted emi	ssion leve	s (10 m a.	g.l.)		
Wind speed (ms ⁻¹)	6.0	7.0	8.0	9.0	10.0	6.0	7.0	8.0	9.0	10.0		
Frequency (Hz)												
63	108.3	n/a	108.6	n/a	n/a	108.6	108.6	108.6	108.6	108.6		
125	109.4	n/a	109.1	n/a	n/a	109.1	109.1	109.1	109.1	109.1		
250	105.1	n/a	104.6	n/a	n/a	104.6	104.6	104.6	104.6	104.6		
500	102.2	n/a	103.0	n/a	n/a	103.0	103.0	103.0	103.0	103.0		
1000	99.1	n/a	100.1	n/a	n/a	100.1	100.1	100.1	100.1	100.1		
2000	95.4	n/a	95.3	n/a	n/a	95.3	95.3	95.3	95.3	95.3		
4000	87.8	n/a	88.6	n/a	n/a	88.6	88.6	88.6	88.6	88.6		
8000	85.5	n/a	86.8	n/a	n/a	86.8	86.8	86.8	86.8	86.8		
A-weighted	104.5	105.0	105.0	105.0	105.0	105.0	105.0	105.0	105.0	105.0		

5.1.2 Siemens SWT-2.126-101

Siemens SWT-2.126-101 turbine broadband source sound power level data for 10-m a.g.l. wind speeds of 4 to 12 ms⁻¹ and octave band source sound power level data for 10-m a.g.l. wind speeds of 6 and 8 ms⁻¹ are listed in Siemens A/S documents

Table 2 Siemens SWT-2.126-101 — Wind turbine acoustic emissions summary.

Make and Model:	ake and Model: Siemens SWT-2.126-101												
Rating: 2,126 kW	ating: 2,126 kW												
Hub height (m): 99	lub height (m): 99.5												
Wind profile adjus	/ind profile adjustment: summer night-time power-law wind shear coefficient = 0.45												
	Octave band sound power level (dB)												
	Manufa	acturer's e	mission le	vels (10 n	1 a.g.o.)	Adj	usted emi	ssion level	ls (10 m a.	g.l.)			
Wind speed (ms ⁻¹)	6.0	7.0	8.0	9.0	10.0	6.0	7.0	8.0	9.0	10.0			
Frequency (Hz)													
63	108.8	n/a	108.4	n/a	n/a	108.4	108.4	108.4	108.4	108.4			
125	109.7	n/a	108.6	n/a	n/a	108.6	108.6	108.6	108.6	108.6			
250	104.7	n/a	103.4	n/a	n/a	103.4	103.4	103.4	103.4	103.4			
500	100.5	n/a	101.7	n/a	n/a	101.7	101.7	101.7	101.7	101.7			
1000	97.4	n/a	99.1	n/a	n/a	99.1	99.1	99.1	99.1	99.1			
2000	94.8	n/a	94.3	n/a	n/a	94.3	94.3	94.3	94.3	94.3			
4000	86.9	n/a	88.0	n/a	n/a	88.0	88.0	88.0	88.0	88.0			
8000	84.6	n/a	86.2	n/a	n/a	86.2	86.2	86.2	86.2	86.2			

5.2 SWEC Wind Turbines

103.5

A-weighted

5.2.1 Siemens SWT-2.221-101

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

104.0

The 10 m broadband and octave source sound power levels for the Siemens SWT-2.221-101 turbine with a hub height of 80 m are shown in Table 3. These values have been taken directly from the Summerhaven project (draft) Noise Study Report (Golder, 2010). It should be noted that Zephyr North has modified the 'Adjusted' octave band source sound power level values for 6 and 7 ms⁻¹ to match the remaining values at 8, 9 and 10 ms⁻¹. It is believed that this will more accurately represent the turbine noise characteristics at the relatively higher hub-height wind speeds corresponding to the 10-m wind speeds which would be driven by the high (0.45) summer night-time wind shear.

Golder (2010) makes no mention of tonality with regard to this turbine. Since this turbine is the same power- derated version of the SWT2.3-101 described for the GREP project, it has been assumed for the purposes of this noise assessment report that there is no tonal noise associated with the Summerhaven turbines. No tonal penalty has been applied.

Golder (2010) reports that a summer night-time vertical wind shear of 0.42 was used for hub-height wind speed adjustments.

V82-1.65 MW Creating more from less

Vestas.

Optimised for low and medium winds

With its large rotor and powerful generator, the V82 outperforms any turbine in its megawatt class for sites with low and medium wind conditions. Our hydraulic Active-Stall® technology ensures that the rotor gathers the maximum power from the prevailing wind, while minimising loads and controlling output. Active-Stall® provides failsafe protection in all conditions and, at and above its rated wind speed, maintains a steady output of 1.65 MW. With the V82, we have designed a wind turbine that offers unparalleled performance at a cost-effective price.

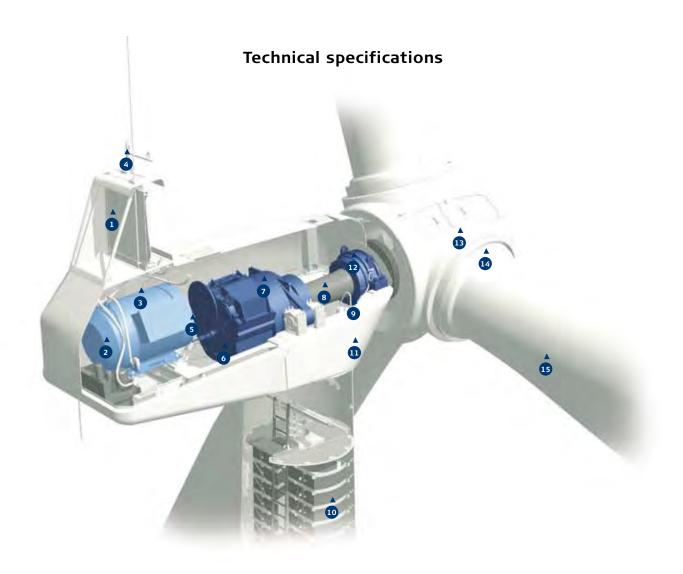
Low sound level

Vestas has made a concerted effort to reduce the sound level of the V82 dramatically – with audible results. The operating sound levels are among the lowest on the market,

regardless of wind speed. The V82 also comes with a twospeed generator, which makes it possible to cut sound even further to meet specific requirements, e.g. for night time or low-wind operations.

Excellent grid compatibility

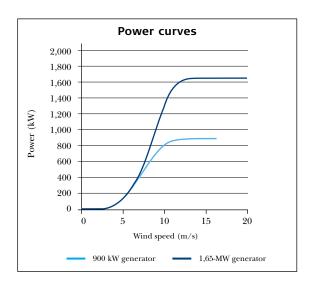
As wind turbines capture more of the electricity market each year, they have an increasingly significant role to play in grid management. Fortunately, the V82 meets even the most stringent grid demands, and with the installation of our advanced grid compliance system, the V82 will actually help stabilise a weak grid. Vestas grid support features full load and dynamic phase compensation to enhance reactive power regulation and thus keep the power factor in range. It has an uninterrupted backup power supply, too, so that auxiliary systems run at full capacity during grid disturbances. Moreover, our grid support provides continuous active and reactive power regulation to maintain voltage balance in the grid, as well as fault ride-through in the event of disturbances.

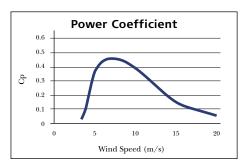

High reliability

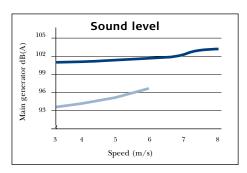
Det Norske Veritas (DNV) has certified the V82 as meeting the strictest standards in the wind industry. It has the capacity to tune up its own generator, which helps to give it a particularly high degree of operational availability. In addition, the nacelle is based on the thoroughly tested design of previous models. To date, more than 700 wind turbines featuring this platform design have been installed on sites with conditions ranging from arctic to tropical.

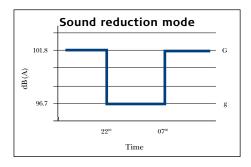
Proven performance

Wind power plants require substantial investments, and the process can be very complex. To assist in the evaluation and purchasing process, Vestas has identified four factors that are critical to wind turbine quality: energy production, operational availability, power quality and sound level.


We spend months testing and documenting these performance areas for all Vestas turbines. When we are finally satisfied, we ask an independent testing organisation to verify the results – a practice we call Proven Performance. At Vestas we do not just talk about quality. We prove it.






- Cooler
- 2 Generator
- 3 Nacelle computer
- 4 Anemometer windvanes
- 5 Coupling
- 6 Mechanical brake
- Gearbox
- 8 Main shaft
- 9 Yaw gears
- 10 Tower damper

- Machine foundation
- 12 Main bearing
- Hub computer
- Pitch system
- 15 Blade
- Dynamic converter (option)
- 10 Main panel
- Phase compensation (full load option)
- 19 CPL
- 20 Transformer and switchgear

Rotor

Diameter: 82 m Area swept: 5,281 m²

Nominal revolutions: 14.4 rpm, 14.4/10.8 rpm

Number of blades: 3

Power regulation: Active-Stall®

Air brake: Full blade pitch by three separate

hydraulic pitch cylinders

Tower

Hub height (approx.): 59 m, 68.5 m, 70 m, 78 m

Operational data

	IEC IIB:	IEC IIB:
	1,650 kW	900 kW/1,650 kW
Cut-in wind speed:	3.5 m/s	2.5 m/s
Nominal wind speed:	13 m/s	13 m/s
Cut-out wind speed		
(10 minutes):	20 m/s	20 m/s
Cut-out wind speed		
(1 minute):	24 m/s	24 m/s
Cut-out wind speed		
(1 second):	32 m/s	32 m/s

Generator

Type: Asynchronous

one or two speed generator water cooled

 $\begin{array}{lll} \mbox{Nominal output:} & 1,650 \mbox{ kW} \\ \mbox{Operational data:} & 50/60 \mbox{ Hz} \\ \mbox{690 V} \end{array}$

Gearbox

Type: Planetary/helical stages

Control

Type: Computer-based control of all turbine

functions with the option of remote monitoring. Output regulation and optimisation via Active-Stall®.

Weight

Nacelle 52 t Rotor 43 t

Towers:

 $\begin{array}{cccc} \text{Hub height:} & \text{IEC IIB} \\ 59 \text{ m} & 75 \text{ t} \\ 68.5 \text{ m} & 105 \text{ t} \\ 70 \text{ m} & 110 \text{ t} \\ 78 \text{ m} & 130 \text{ t} \\ \end{array}$

 $t = metric\ tonnes$

All specifications subject to change without notice.

Creating more from less

Ideally, it makes sense to generate electricity close to where it will be consumed so as to keep transmission, infrastructure and service costs low. However, since populous areas tend to have low winds and stringent requirements on sound levels, the wind industry often concentrates on coastal areas, deserted interiors and the open sea, where the wind is plentiful and sound restrictions are few.

With the V82 wind turbine, Vestas has made it easier to produce electricity close to where people live. Not only is the V82 extremely efficient in areas with low and medium winds, but it also provides the means to adjust sound levels

to suit local requirements. This means that a large number of previously marginal sites can now be exploited profitably – and quietly.

The V82 is an extremely competitive turbine in its class in areas with low and medium winds. A stall-regulated wind turbine, it has been optimised for sites with an average wind speed of just $6.5~\rm m/s$ at hub height, while a breeze of as little as $2.5~\rm m/s$ is all that is needed to start production. The V82 is available with either a one or a two-speed generator

Vestas Wind Systems A/S Alsvej 21 8900 Randers Denmark Tel. +45 97 30 00 00 Fax +45 97 30 00 01 vestas@vestas.com www.vestas.com

To see a complete list of our sales and service units, visit www.vestas.com

Kossowski, Julia

From: Hickey, Maurice <Maurice.Hickey@gdfsuezna.com>

Sent: Wednesday, December 14, 2011 10:43 AM

To: Kossowski, Julia; Gafur, Ansar

Cc: Bultena, Carolyn

Subject: RE: Mohawk Point Coordinates

Attachments: A1-156508-MO-121-0100-Rev6-AsBuilt.pdf

Hi Julia

Please accept my apologies for not getting this to you sooner. It has been hectic as of late

Please see the attached map with coordinates. The turbines at Mohawk are Vestas V 82-1.65Mw Mark IV 60 Hz units. They have a hub height of 80 meters.

If you need more info please feel free to let me know.

Maurice 647-271-9753

----Original Message----

From: Kossowski, Julia [mailto:Julia.Kossowski@stantec.com]

Sent: December-12-11 9:44 AM

To: Gafur, Ansar

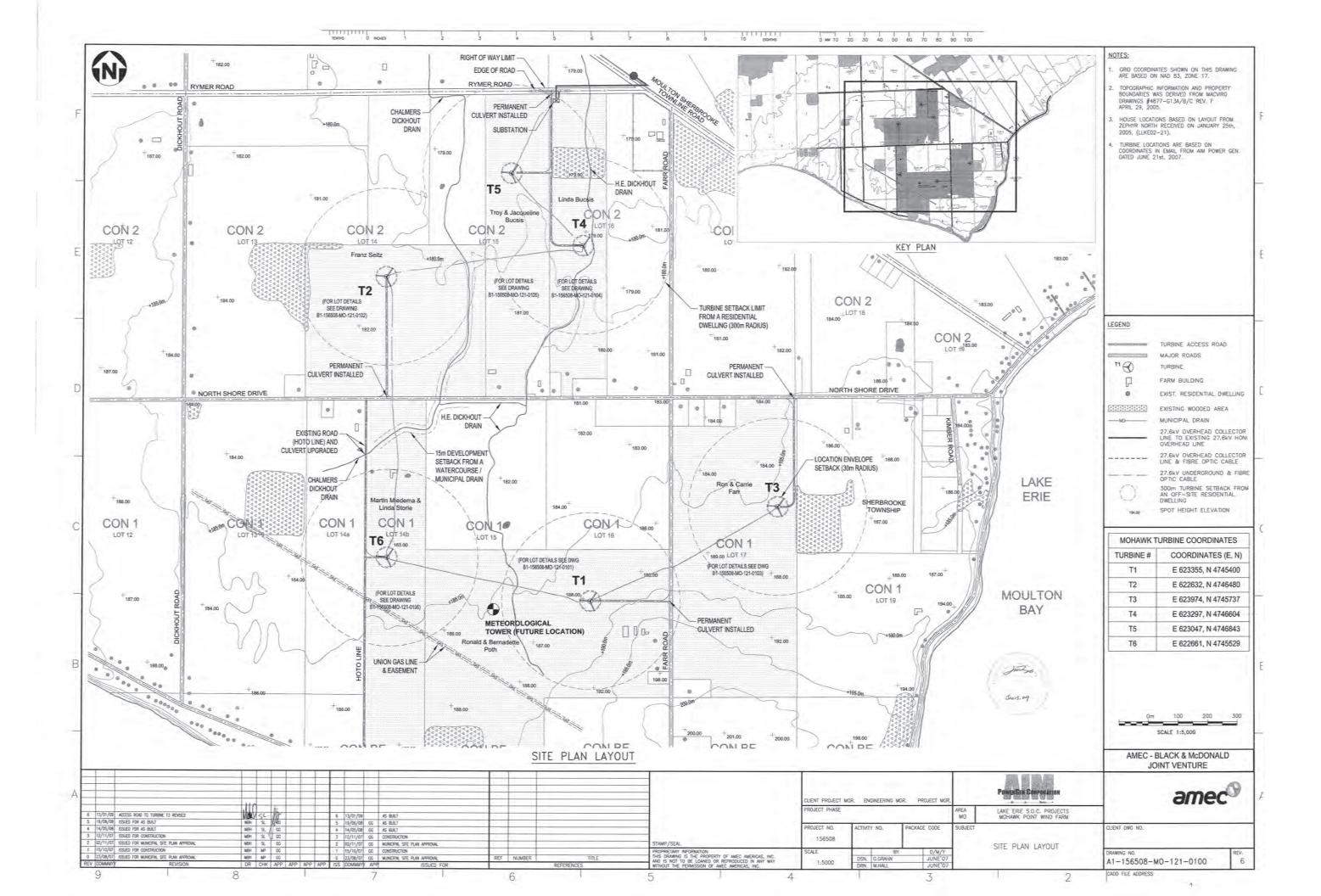
Cc: Hickey, Maurice; Bultena, Carolyn Subject: RE: Mohawk Point Coordinates

Thank you for the follow-up, Ansar.

Maurice, Carolyn; I would be so thankful if you could provide the coordinates and make/model to me today.

Thanks in advance, Julia

Julia Kossowski Project Manager Stantec 49 Frederick Street Kitchener ON N2H 6M7


Ph: (519) 569-4338 Fx: (519) 579-6733 Cell: (226) 989-5259

julia.kossowski@stantec.com

www.stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

1.0 Wind Turbine Specifications Report

The HAF Wind Energy Project ("the Project") is proposed to consist of five (5) Vestas V100-1.8MW turbines. The turbine model was selected based upon its technical performance, design characteristics, acoustic properties, power output, and site specific considerations.

The purpose of this report is to provide the technical information on the turbines to be used for the proposed Project. The Vineland Power Inc. is proposing a single Class 4 Wind Energy Facility consisting of five 1.8 MW wind turbines for a total nameplate capacity of 9.0 MW in the Township of West Lincoln in Niagara Region of the Province of Ontario.

1.1 Technical Specifications

The Vestas V100-1.8 MW wind turbine is a pitch regulated upwind turbine with active yaw and a three-blade rotor. The Vestas V100-1.8 MW turbine has a rotor diameter of 100 m with a generator rated at 1.8 MW. The turbine utilizes a microprocessor pitch control system called OptiTip®. With these features the wind turbine is able to optimize power output at different wind speeds.

A summary of the technical specifications is presented in **Table 1.1**with additional information provided by the manufacturer is included in **Appendix 1**.

Table 1.1a: Summary of Technical Specifications of the Vestas V100-1.8MW						
Specification	Vestas V100-1.8MW					
Nameplate Capacity	1.8 Megawatt					
Hub Height (above grade)	95 m					
Rotator Diameter	100 m					
Blade Length	49 m					
Swept Area	7850 m ²					
Minimum Wind Speed (cut-in speed)	4.0 m/s					
Maximum Wind Speed (cut-out speed)	20.0 m/s					
Dynamic Rotational Speed Range	9.3 rpm to 16.6 rpm					
Actual Rotational Speed	14.9 rpm					

Each Vestas V100 turbine has a nameplate capacity of 1.8 MW and will be built to a hub height of 95 meters. The rotor diameter is 100 meters with swept area of 7850 m2.

The minimum operational wind speed (cut-in speed) is 4.0 m/s with a maximum operational speed (cut-out speed) of 20.0 m/s.

The V-100 Turbine is erected on a tabular steel tower which holds the nacelle at 95 meters above the ground. The nacelle houses the hub and electrical components. Each blade is constructed of light weight airfoil shells bonded to supporting beams

and connect to the hub forming a 100 meter rotor. The generator is asynchronous with wound rotor, slip rings and VCUS. The turbine's operational envelope is -20° to $+40^{\circ}$ C.

Table 1.1b summarizes the Wind Turbine General Specifications.

Table 1.1b: W	Operational Envelope: -20° to +40° C						
Rotor	Rotor Diameter: 100m						
	Swept Area: 7850m ²						
	Speed, Dynamic Operation Range: 9.3 - 16.6 rpm						
	Rotational Direction: Clockwise (front view)						
Tower	Type: tubular steel tower						
	Hub: 95m						
Electrical	Frequency: 60 Hz						
	Rated Power: 1.8 MW						
	Generator: Asynchronous with wound rotor slip rings and VCUS						
Blade	Type: airfoil shells bonded to supporting beam						
	Length: 49m						
	Max Chord: 3.9m						
Tower Type: tubular steel Hub: 95m Electrical Frequency: 60 Hz Rated Power: 1.8 M Generator: Asynchr slip rings and VCU Blade Type: airfoil shells beam Length: 49m Max Chord: 3.9m Nacelle Height Installed: 5.4 Width: 3.4 m Length: 10.4 m	Height for Transport: 4.0 m						
	Height Installed: 5.4 m						
	Width: 3.4 m						
	Length: 10.4 m						
Hub	Material: cast ball shell hub						
	Height: 95m						
	Diameter: 3.3 m						

1.2 Acoustic Emissions Data

The V100 1.8 MW turbine model has a maximum sound power rating of 105.00 dBA. Additional information on the acoustic data can be found in Tables 1.2a, 1.2b, 1.2c, and 1.3. These tables summarize the wind turbine specifications provided in the Manufacture Technical Details provided in Appendix 1.

Table 1-2a provides the Sound Power Level Ratings (dBA) for **Mode 0** at a Hub Height of **95 meters**. The table shows the conditions for sound power levels at speeds of **3 m/s** to **13 m/s** at **10 meters** with the corresponding wind speed at hub height (HH). The sound power rating does not exceed 105.00 dBA.

Conditions for Sound Power Level	Hub Height 95 meters	Wind speed a hh [m/sec]	
LwA @ 3 m/s (10 m above ground) [dBA]	93.8	4.3	
LwA @ 4 m/s (10 m above ground) [dBA]	96.4	5.7	
LwA @ 5 m/s (10 m above ground) [dBA]	100.7	7.2	
LwA @ 6 m/s (10 m above ground) [dBA]	104.4	8.6	
LwA @ 7 m/s (10 m above ground) [dBA]	105.0	10.0	
LwA @ 8 m/s (10 m above ground) [dBA]	105.0	11.5	
LwA @ 9 m/s (10 m above ground) [dBA]	105.0	12.9	
LwA @ 10 m/s (10 m above ground) [dBA]	105.0	14.3	
LwA @ 11 m/s (10 m above ground) [dBA]	105.0	15.8	
LwA @ 12 m/s (10 m above ground) [dBA]	105.0	17.2	
LwA @ 13 m/s (10 m above ground) [dBA]	105.0	18.6	

Table 1-2b (below) provides the Sound Power Level Ratings (dBA) for **Mode 1** at a Hub Height of **95 meters**. The table shows the conditions for sound power levels at speeds of **3 m/s** to **13 m/s** at **10 meters** with the corresponding wind speed at hub height (HH). The sound power rating does not exceed 105.00 dBA.

Table 1-2b: Sound Power Level Ratings for Mode 1									
Conditions for Sound Power Level	Hub Height 95 meters	Wind speed at hh [m/sec]							
LwA @ 3 m/s (10 m above ground) [dBA]	93.7	4.3							
LwA @ 4 m/s (10 m above ground) [dBA]	95.7	5.7							
LwA @ 5 m/s (10 m above ground) [dBA]	99.7	7.2							
LwA @ 6 m/s (10 m above ground) [dBA]	103.4	8.6							
LwA @ 7 m/s (10 m above ground) [dBA]	105.0	10.0							
LwA @ 8 m/s (10 m above ground) [dBA]	105.0	11.5							
LwA @ 9 m/s (10 m above ground) [dBA]	105.0	12.9							
LwA @ 10 m/s (10 m above ground) [dBA]	105.0	14.3							
LwA @ 11 m/s (10 m above ground) [dBA]	105.0	15.8							
LwA @ 12 m/s (10 m above ground) [dBA]	105.0	17.2							
LwA @ 13 m/s (10 m above ground) [dBA]	105.0	18.6							

Table 1-2c provides the Sound Power Level Ratings (dBA) for **Mode 2** at a Hub Height of **95 meters**. The table shows the conditions for sound power levels at speeds of **3 m/s** to **13 m/s** at **10 meters** with the corresponding wind speed at hub height (HH). The sound power rating does not exceed 105.00 dBA.

Table 1-2c: Sound Power Level Ratings for Mode 2								
Conditions for Sound Power Level	Hub Height 95 meters	Wind speed at hh [m/sec]						
LwA @ 3 m/s (10 m above ground) [dBA]	93.8	4.3						
LwA @ 4 m/s (10 m above ground) [dBA]	96.4	5.7						
LwA @ 5 m/s (10 m above ground) [dBA]	100.7	7.2						
LwA @ 6 m/s (10 m above ground) [dBA]	103.0	8.6						
LwA @ 7 m/s (10 m above ground) [dBA]	103.0	10.0						
LwA @ 8 m/s (10 m above ground) [dBA]	103.0	11.5						
LwA @ 9 m/s (10 m above ground) [dBA]	103.0	12.9						
LwA @ 10 m/s (10 m above ground) [dBA]	103.0	14.3						
LwA @ 11 m/s (10 m above ground) [dBA]	103.0	15.8						
LwA @ 12 m/s (10 m above ground) [dBA]	103.0	17.2						
LwA @ 13 m/s (10 m above ground) [dBA]	103.0	18.6						

Table 1-3 provides the Octave Band Spectra showing Octave in Hz from **16** Hz to **8000 Hz** with the corresponding Sound Power Level in dB(A). Sound Power Level does not exceed **99.7 dB**.

Table 1-3: Octave Band Spec	tra				S. W.	1 1000	11	DE	- 62.10	1	1	Williams.
Wind Speed@10m [m/s]	3	4	5	6	7	8	9	10	11	12	13	14
16Hz [dB(A)]	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
31.5Hz [dB(A)]	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
63Hz [dB(A)]	NaN	NaN	NaN	85.2	87.4	87.1	86.7	86.6	NaN	NaN	NaN	NaN
125Hz [dB(A)]	NaN	NaN	NaN	89.6	92	91.7	91.3	91.4	NaN	NaN	NaN	NaN
250Hz [dB(A)]	NaN	NaN	NaN	93	94.7	94.2	93.6	93.5	NaN	NaN	NaN	NaN
500Hz [dB(A)]	NaN	NaN	NaN	95.4	97.1	96.7	96.1	96.1	NaN	NaN	NaN	NaN
1000Hz [dB(A)]	NaN	NaN	NaN	98.2	99.7	99.5	99	99.1	NaN	NaN	NaN	NaN
2000Hz [dB(A)]	NaN	NaN	NaN	96.6	98.2	98.4	98.2	98.2	NaN	NaN	NaN	NaN
4000Hz [dB(A)]	NaN	NaN	NaN	94.6	96.6	97.2	98.7	98.6	NaN	NaN	NaN	NaN
8000Hz [dB(A)]	NaN	NaN	NaN	85.4	89.8	90.3	91.4	92.3	NaN	NaN	NaN	NaN

Table 1-3 Notes:

- 1. "NAN" indicates data not available due to insufficient data collection at this wind speed.
- 2. Disclaimers from Vestas: The values are valid for the A-weighted sound power levels Octave band values must be regarded as informative Site specific values are not warranted
- 3. Measurement standard ICE 6140011:2002, using amendments procedure above 95% RP

1.3 Qualifications and Limitations

This summary report was produced, in part, to fulfill the requirements for the Turbine Specifications Report for the Renewable Energy Approval (REA). The contents of this document have been produced using the requirements outlined in 0.Reg 359/09 as well as other applicable Acts and Regulations governing these projects.

Morrison Hershfield Limited's assessment was made in accordance with guidelines, regulations and procedures believed to be current at this time. Changes in guidelines, regulations and policies can occur at the discretion of the government and such changes could affect this report.

Morrison Hershfield Limited and the consulting team retained for this Project have prepared this report in accordance with information provided by its Client and their representatives. While we may have referred to and made use of this information and reporting, we assume no liability for the accuracy of this information.

<u>home</u> | <u>wind energy</u> | <u>wind farms</u> | <u>municipalities</u> | <u>media centre</u> | <u>events</u> | <u>about us</u> | <u>contact us</u> © 2008 Canadian Wind Energy Association (CanWEA)

Table F1 Wind Turbine Sound Emission Summary

Make and Farm: German engineered wind turbine - PWE650 - Rosa Flora (See Attachement)

Model: PWE650

Electrical Rating: 650 kW

Hub Height: 75 m

Data Source:CanwEA; Taken nigner sound level than three time the power capcality turbine E62 (2.3

MW) Model

Octave Band Sound Power Level (dB ref. 10⁻¹² Watts)

		Ма	nufactur	er's Emi	ssion Le	evel	,	Adjuste	d Emissi	on Leve	I
	ght Wind I (m/s)	6	7	8	9	10	6	7	8	9	10
	63	n/a	n/a	n/a	n/a	n/a	113.8	113.8	113.8	113.8	113.8
	125	n/a	n/a	n/a	n/a	n/a	111.3	111.3	111.3	111.3	111.3
(Hz)	250	n/a	n/a	n/a	n/a	n/a	102.9	102.9	102.9	102.9	102.9
) cy	500	n/a	n/a	n/a	n/a	n/a	100.3	100.3	100.3	100.3	100.3
Frequency	1000	n/a	n/a	n/a	n/a	n/a	98.9	98.9	98.9	98.9	98.9
Frec	2000	n/a	n/a	n/a	n/a	n/a	93.4	93.4	93.4	93.4	93.4
	4000	n/a	n/a	n/a	n/a	n/a	82.1	82.1	82.1	82.1	82.1
	8000	n/a	n/a	n/a	n/a	n/a	76.9	76.9	76.9	76.9	76.9
Overall (dE Wa	BA ref. 10 ⁻¹² ltts)						103.5	103.5	103.5	103.5	103.5

1.0 Wind Turbine Specifications Report

The Wainfleet Wind Energy Project ("the Project") is proposed to consist of five (5) Vestas V100-1.8MW turbines. The turbine model was selected based upon its technical performance, design characteristics, acoustic properties, power output, and site specific considerations.

The purpose of this report is to provide the technical information on the turbines to be used for the proposed Project. The Wainfleet Wind Energy Inc. is proposing a single Class 4 Wind Energy Facility consisting of five 1.8 MW wind turbines for a total nameplate capacity of 9.0 MW in the Township of Wainfleet in Niagara Region of the Province of Ontario.

1.1 Technical Specifications

The Vestas V100-1.8 MW wind turbine is a pitch regulated upwind turbine with active yaw and a three-blade rotor. The Vestas V100-1.8 MW turbine has a rotor diameter of 100 m with a generator rated at 1.8 MW. The turbine utilizes a microprocessor pitch control system called OptiTip®. With these features the wind turbine is able to optimize power output at different wind speeds.

A summary of the technical specifications is presented in **Table 1.1**with additional information provided by the manufacturer is included in **Appendix 1**.

Specification	Vestas V100-1.8MW
Nameplate Capacity	1.8 Megawatt
Hub Height (above grade)	95 m
Rotator Diameter	100 m
Blade Length	49 m
Swept Area	7850 m ²
Minimum Wind Speed (cut-in speed)	4.0 m/s
Maximum Wind Speed (cut-out speed)	20.0 m/s
Dynamic Rotational Speed Range	9.3 rpm to 16.6 rpm
Actual Rotational Speed	14.9 rpm

Each Vestas V100 turbine has a nameplate capacity of 1.8 MW and will be built to a hub height of 95 meters. The rotor diameter is 100 meters with swept area of 7850 m2.

The minimum operational wind speed (cut-in speed) is 4.0 m/s with a maximum operational speed (cut-out speed) of 20.0 m/s.

The V-100 Turbine is erected on a tabular steel tower which holds the nacelle at 95 meters above the ground. The nacelle houses the hub and electrical components. Each blade is constructed of light weight airfoil shells bonded to supporting beams

and connect to the hub forming a 100 meter rotor. The generator is asynchronous with wound rotor, slip rings and VCUS. The turbine's operational envelope is -20° to $+40^{\circ}$ C.

Table 1.1b summarizes the Wind Turbine General Specifications.

	Operational Envelope: -20° to +40° C						
Rotor	Rotor Diameter: 100m						
	Swept Area: 7850m ²						
	Speed, Dynamic Operation Range: 9.3 – 16.6 rpm						
	Rotational Direction: Clockwise (front view)						
Tower	Type: tubular steel tower						
	Hub: 95m						
Electrical	Frequency: 60 Hz						
	Rated Power: 1.8 MW						
	Generator: Asynchronous with wound rotor, slip rings and VCUS						
Electrical Blade Nacelle	Type: airfoil shells bonded to supporting beam						
	Length: 49m						
	Max Chord: 3.9m						
Nacelle	Height for Transport: 4.0 m						
	Height Installed: 5.4 m						
	Width: 3.4 m						
	Length: 10.4 m						
Hub	Material: cast ball shell hub						
	Height: 95m						
	Diameter: 3.3 m						

1.2 Acoustic Emissions Data

The V100 1.8 MW turbine model has a maximum sound power rating of **105.00 dBA**. Additional information on the acoustic data can be found in **Tables 1.2a, 1.2b, 1.2c,** and **1.3**. These tables summarize the wind turbine specifications provided in the Manufacture Technical Details provided in **Appendix 1**.

Table 1-2a provides the Sound Power Level Ratings (dBA) for **Mode 0** at a Hub Height of **95 meters**. The table shows the conditions for sound power levels at speeds of **3 m/s** to **13 m/s** at **10 meters** with the corresponding wind speed at hub height (HH). The sound power rating does not exceed 105.00 dBA.

Table 1-2a: Sound Power Level Ratings for Mode 0		
Conditions for Sound Power Level	Hub Height 95 meters	Wind speed at hh [m/sec]
LwA @ 3 m/s (10 m above ground) [dBA]	93.8	4.3
LwA @ 4 m/s (10 m above ground) [dBA]	96.4	5.7
LwA @ 5 m/s (10 m above ground) [dBA]	100.7	7.2
LwA @ 6 m/s (10 m above ground) [dBA]	104.4	8.6
LwA @ 7 m/s (10 m above ground) [dBA]	105.0	10.0
LwA @ 8 m/s (10 m above ground) [dBA]	105.0	11.5
LwA @ 9 m/s (10 m above ground) [dBA]	105.0	12.9
LwA @ 10 m/s (10 m above ground) [dBA]	105.0	14.3
LwA @ 11 m/s (10 m above ground) [dBA]	105.0	15.8
LwA @ 12 m/s (10 m above ground) [dBA]	105.0	17.2
LwA @ 13 m/s (10 m above ground) [dBA]	105.0	18.6

Table 1-2b (below) provides the Sound Power Level Ratings (dBA) for **Mode 1** at a Hub Height of **95 meters**. The table shows the conditions for sound power levels at speeds of **3 m/s** to **13 m/s** at **10 meters** with the corresponding wind speed at hub height (HH). The sound power rating does not exceed 105.00 dBA.

Conditions for Sound Power Level	Hub Height 95 meters	Wind speed at hh [m/sec]	
LwA @ 3 m/s (10 m above ground) [dBA]	93.7	4.3	
LwA @ 4 m/s (10 m above ground) [dBA]	95.7	5.7	
LwA @ 5 m/s (10 m above ground) [dBA]	99.7	7.2	
LwA @ 6 m/s (10 m above ground) [dBA]	103.4	8.6	
LwA @ 7 m/s (10 m above ground) [dBA]	105.0	10.0	
LwA @ 8 m/s (10 m above ground) [dBA]	105.0	11.5	
LwA @ 9 m/s (10 m above ground) [dBA]	105.0	12.9	
LwA @ 10 m/s (10 m above ground) [dBA]	105.0	14.3	
LwA @ 11 m/s (10 m above ground) [dBA]	105.0	15.8	
LwA @ 12 m/s (10 m above ground) [dBA]	105.0	17.2	
LwA @ 13 m/s (10 m above ground) [dBA]	105.0	18.6	

Table 1-2c provides the Sound Power Level Ratings (dBA) for **Mode 2** at a Hub Height of **95 meters**. The table shows the conditions for sound power levels at speeds of **3 m/s** to **13 m/s** at **10 meters** with the corresponding wind speed at hub height (HH). The sound power rating does not exceed 105.00 dBA.

Table 1-2c: Sound Power Level Ratings for Mode 2		3000
Conditions for Sound Power Level	Hub Height 95 meters	Wind speed at hh [m/sec]
LwA @ 3 m/s (10 m above ground) [dBA]	93.8	4.3
LwA @ 4 m/s (10 m above ground) [dBA]	96.4	5.7
LwA @ 5 m/s (10 m above ground) [dBA]	100.7	7.2
LwA @ 6 m/s (10 m above ground) [dBA]	103.0	8.6
LwA @ 7 m/s (10 m above ground) [dBA]	103.0	10.0
LwA @ 8 m/s (10 m above ground) [dBA]	103.0	11.5
LwA @ 9 m/s (10 m above ground) [dBA]	103.0	12.9
LwA @ 10 m/s (10 m above ground) [dBA]	103.0	14.3
LwA @ 11 m/s (10 m above ground) [dBA]	103.0	15.8
LwA @ 12 m/s (10 m above ground) [dBA]	103.0	17.2
LwA @ 13 m/s (10 m above ground) [dBA]	103.0	18.6

Table 1-3 provides the Octave Band Spectra showing Octave in Hz from **16** Hz to **8000** Hz with the corresponding Sound Power Level in dB(A). Sound Power Level does not exceed **99.7** dB.

Table 1-3: Octave Band Spect		F 18	1	2	7			200	PPV	40	1000	2.00
Wind Speed@10m [m/s]	3	4	5	6	/	8	9	10	11	12	13	14
16Hz [dB(A)]	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
31.5Hz [dB(A)]	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
63Hz [dB(A)]	NaN	NaN	NaN	85.2	87.4	87.1	86.7	86.6	NaN	NaN	NaN	Nal
125Hz [dB(A)]	NaN	NaN	NaN	89.6	92	91.7	91.3	91.4	NaN	NaN	NaN	Nat
250Hz [dB(A)]	NaN	NaN	NaN	93	94.7	94.2	93.6	93.5	NaN	NaN	NaN	Nal
500Hz [dB(A)]	NaN	NaN	NaN	95.4	97.1	96.7	96.1	96.1	NaN	NaN	NaN	Nal
1000Hz [dB(A)]	NaN	NaN	NaN	98.2	99.7	99.5	99	99.1	NaN	NaN	NaN	Nal
2000Hz [dB(A)]	NaN	NaN	NaN	96.6	98.2	98.4	98.2	98.2	NaN	NaN	NaN	Nai
4000Hz [dB(A)]	NaN	NaN	NaN	94.6	96.6	97.2	98.7	98.6	NaN	NaN	NaN	Nal
8000Hz [dB(A)]	NaN	NaN	NaN	85.4	89.8	90.3	91.4	92.3	NaN	NaN	NaN	Nal

Table 1-3 Notes:

- 1. "NAN" indicates data not available due to insufficient data collection at this wind speed.
- Disclaimers from Vestas: The values are valid for the A-weighted sound power levels
 Octave band values must be regarded as informative
 Site specific values are not warranted
- 3. Measurement standard ICE 6140011:2002, using amendments procedure above 95% RP

1.3 Qualifications and Limitations

This summary report was produced, in part, to fulfill the requirements for the Turbine Specifications Report for the Renewable Energy Approval (REA). The contents of this document have been produced using the requirements outlined in O.Reg 359/09 as well as other applicable Acts and Regulations governing these projects.

Morrison Hershfield Limited's assessment was made in accordance with guidelines, regulations and procedures believed to be current at this time. Changes in guidelines, regulations and policies can occur at the discretion of the government and such changes could affect this report.

Morrison Hershfield Limited and the consulting team retained for this Project have prepared this report in accordance with information provided by its Client and their representatives. While we may have referred to and made use of this information and reporting, we assume no liability for the accuracy of this information.

Stantec

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix F Additional Information February 05, 2016

SAMPLE CALCULATION IN OCTAVE BAND (O_1153)

Receiver

 Name:
 H1BIRD3890

 ID:
 O_1153

 X:
 621067.4

 Y:
 4749725.2

 Z:
 180.6

		Х	Υ	Z	Dist	Refl.	DEN	Freq.	Lw	I/a	КО	Dc	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cme	RL	Lr
Name	ID	(m)	(m)	(m)	(m)			(Hz)	dB(A)	dB	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	dB(A)
		620627.3	4749341.4	300.6	596.1	0	DEN	32	-39.4	0	0	0	66.5	0.0	-3.0	0	0	0	(0	-102.9
		620627.3	4749341.4	300.6	596.1	0	DEN	63	83.6	0	0	0	66.5	0.1	-3.0	0	0	0	(0	20.0
		620627.3	4749341.4	300.6	596.1	0	DEN	125	91.7	0	0	0	66.5	0.2	1.5	0	0	0	(0	23.4
		620627.3	4749341.4	300.6	596.1	0	DEN	250	98.7	0	0	0	66.5	0.6	0.1	0	0	0	(0	31.5
R11TO20	T20	620627.3	4749341.4	300.6	596.1	0	DEN	500	100.8	0	0	0	66.5	1.1	-0.9	0	0	0	(0	34.0
		620627.3	4749341.4	300.6	596.1	0	DEN	1000	98.3	0	0	0	66.5	2.2	-0.9	0	0	0	(0	30.5
		620627.3	4749341.4	300.6	596.1	0	DEN	2000	92.8	0	0	0	66.5	5.8	-0.9	0	0	0	(0	21.4
		620627.3	4749341.4	300.6	596.1	0	DEN	4000	85.9	0	0	0	66.5	19.5	-0.9	0	0	0	(0	0.8
		620627.3	4749341.4	300.6	596.1	0	DEN	8000	73.3	0	0	0	66.5	69.7	-0.9	0	0	0	(0	-62.0
		621422.7	4750668.3	299.5	1014.8	0	DEN	32	-39.4	0	0	0	71.1	0.0	-3.0	0	0	0	(0	-107.6
		621422.7	4750668.3	299.5	1014.8	0	DEN	63	83.6	0	0	0	71.1	0.1	-3.0	0	0	0	(0 0	15.3
		621422.7	4750668.3	299.5	1014.8	0	DEN	125	91.7	0	0	0	71.1	0.4	1.7	0	0	0	(0 0	18.4
		621422.7	4750668.3	299.5	1014.8	0	DEN	250	98.7	0	0	0	71.1	1.1	0.1	0	0	0	(0 0	26.4
R11TS13	T96	621422.7	4750668.3	299.5	1014.8	0	DEN	500	100.8	0	0	0	71.1	2.0	-0.9	0	0	0	(0 0	28.6
		621422.7	4750668.3	299.5	1014.8	0	DEN	1000	98.3	0	0	0	71.1	3.7	-0.9	0	0	0	(0 (24.4
		621422.7	4750668.3	299.5	1014.8	0	DEN	2000	92.8	0	0	0	71.1	9.8	-0.9	0	0	0	(0 (12.8
		621422.7	4750668.3	299.5	1014.8	0	DEN	4000	85.9		0		71.1	33.3	-0.9	0	0			0 (-17.6
		621422.7	4750668.3	299.5	1014.8	0	DEN	8000	73.3	0	0	0	71.1	118.6	-0.9	0	0	0	(0	-115.5
	T63	621609.3	4751032.3	300.4	1420.1	0	DEN	32	-39.4	0	0	0	74.0	0.0	-3.0	0	0	0		0 (-110.5
		621609.3	4751032.3	300.4	1420.1	0	DEN	63	83.6	0	0	0	74.0	0.2	-3.0	0	0	0	(0	12.4
		621609.3	4751032.3	300.4	1420.1	0	DEN	125	91.7	0	0	0	74.0	0.6	1.8	0	0	0		0	15.3
		621609.3	4751032.3	300.4	1420.1	0	DEN	250	98.7	0	0	0	74.0	1.5	0.1	0	0	0	(0 0	23.1
R11TO63		621609.3	4751032.3	300.4	1420.1	0	DEN	500	100.8	0	0	0	74.0	2.7	-0.9	0	0			0	24.9
		621609.3	4751032.3	300.4	1420.1	0	DEN	1000	98.3	0	0	0	74.0	5.2	-0.9	0	0		_	0	20.0
		621609.3	4751032.3	300.4	1420.1	0	DEN	2000	92.8	_	C	_	74.0	13.7	-0.9	0	0			0	5.9
		621609.3	4751032.3	300.4	1420.1	0	DEN	4000	85.9		C	_	74.0	46.5	-0.9	0				0	-33.8
		621609.3	4751032.3	300.4	1420.1	0	DEN	8000	73.3	-	0	0	74.0	166.0	-0.9	0	0			0	-165.8
		621876.7	4751310.9	301.0	1784.4	0	DEN	32	-39.4	_			76.0	0.1	-3.0	0		1		0	-112.5
		621876.7	4751310.9	301.0	1784.4	0	DEN	63	83.6	0	C		76.0	0.2	-3.0	0	0			0	10.4
		621876.7	4751310.9	301.0	1784.4	0	DEN	125	91.7	_	C		76.0	0.7	1.8	0	0	_		0	13.2
	T62	621876.7	4751310.9	301.0	1784.4	0	DEN	250	98.7	_	0		76.0	1.9	0.1	0	0		_	0	20.7
R11TO62		621876.7	4751310.9	301.0	1784.4	0	DEN	500	100.8	_		-	76.0	3.4	-0.9	0				0	22.2
		621876.7	4751310.9	301.0	1784.4	0	DEN	1000	98.3	_	0		76.0	6.5	-0.9	0				0	16.6
		621876.7	4751310.9	301.0	1784.4	0	DEN	2000	92.8	-	0	0	76.0	17.2	-0.9	0	0	0		0	0.4
		621876.7	4751310.9	301.0	1784.4	0	DEN	4000	85.9		0		76.0	58.5	-0.9	0	0			0	-47.7
		621876.7	4751310.9	301.0	1784.4	0	DEN	8000	73.3	0	0	0	76.0	208.6	-0.9	0	0	0	(0	-210.4

		619207.8	4749223.6	299.0	1929.6	0	DEN	32	-39.4	0	0	0	76.7	0.1	-3.0	0	0	0	0	0	-113.2
		619207.8	4749223.6	299.0	1929.6	0	DEN	63	83.6		0	0	76.7	0.1	-3.0	0	0	0	0	0	
		619207.8	4749223.6	299.0	1929.6	0	DEN	125	91.7	0	0	0	76.7	0.8	1.8	0	0	0	0	0	12.4
		619207.8	4749223.6	299.0	1929.6	0	DEN	250	98.7	0	0	0	76.7	2.0	0.1	0	0	0	0	0	19.9
R11TO99 (formally	Т99	619207.8	4749223.6	299.0	1929.6	0	DEN	500	100.8		0	0	76.7	3.7	-0.9	0	0	0	0	0	21.3
R11TS82)	199	619207.8	4749223.6	299.0	1929.6	0	DEN	1000	98.3	0	0	0	76.7	7.1	-0.9	0	0	0	0	0	15.4
		619207.8	4749223.6	299.0	1929.6	0	DEN	2000	92.8	-	0	0	76.7	18.6	-0.9	0	0	0	0	0	-1.7
							DEN			-	0	0	76.7		-0.9		0	0	0	0	
		619207.8 619207.8	4749223.6 4749223.6	299.0 299.0	1929.6 1929.6	0	DEN	4000 8000	85.9 73.3		0	0	76.7	63.2 225.5	-0.9	0	0	0	0	0	-53.1 -228.0
																_		_		U	
		621171.0	4747754.0	303.8	1977.7	0	DEN	32	-39.4		0	0	76.9	0.1	-3.0	0	0	0	0	0	-113.4
		621171.0	4747754.0	303.8	1977.7	0	DEN	63	83.6	0		0	76.9	0.2	-3.0	0	0	0	0	- 0	9.4
		621171.0	4747754.0	303.8	1977.7	0	DEN	125	91.7	0	0	0	76.9	0.8	1.8	0	0	0	0	0	12.2
		621171.0	4747754.0	303.8	1977.7	0	DEN	250	98.7	0	0	0	76.9	2.1	0.1	0	0	0	0	- 0	19.6
R11TO05	T05	621171.0	4747754.0	303.8	1977.7	0	DEN	500	100.8		0	0	76.9	3.8	-0.9	0	0	0	0	0	21.0
		621171.0	4747754.0	303.8	1977.7	0	DEN	1000	98.3	0	0	0	76.9	7.2	-0.9	0	0	0	0	0	15.0
		621171.0	4747754.0	303.8	1977.7	0	DEN		92.8		0	0	76.9	19.1	-0.9	0	0	0	0	0	-2.3
		621171.0	4747754.0	303.8	1977.7	0	DEN	4000	85.9		0	0	76.9	64.8	-0.9	0	0	0	0	0	-54.9
		621171.0	4747754.0	303.8	1977.7	0	DEN	8000	73.3	0	0	0	76.9	231.2	-0.9	0	0	0	0	- 0	-233.9
		622737.0	4748967.6	302.0	1837.5	0	DEN	32	-39.4	-	0	0	76.3	0.1	-3.0	0	0	0	0	0	-112.7
		622737.0	4748967.6	302.0	1837.5	0	DEN	63	83.7	0	0	0	76.3	0.2	-3.0	0	0	0	0	0	10.2
		622737.0	4748967.6	302.0	1837.5	0	DEN	125	92.0	0	0	0	76.3	0.8	1.8	0	0	0	0	0	13.2
		622737.0	4748967.6	302.0	1837.5	0	DEN	250	96.1	0	0	0	76.3	1.9	0.1	0	0	0	0	0	17.8
R11TO46	T46	622737.0	4748967.6	302.0	1837.5	0	DEN	500	98.4	0	0	0	76.3	3.5	-0.9	0	0	0	0	0	19.5
		622737.0	4748967.6	302.0	1837.5	0	DEN	1000	97.0	-	0	0	76.3	6.7	-0.9	0	0	0	0	0	14.9
		622737.0	4748967.6	302.0	1837.5	0	DEN	2000	90.2	0	0	0	76.3	17.8	-0.9	0	0	0	0	0	-2.9
		622737.0	4748967.6	302.0	1837.5	0	DEN	4000	85.2	0	0	0	76.3	60.2	-0.9	0	0	0	0	0	-50.4
		622737.0	4748967.6	302.0	1837.5	0	DEN	8000	81.9		0	0	76.3	214.8	-0.9	0	0	0	0	0	-208.3
		622482.9	4748446.9	303.3	1911.2	0	DEN	32	-39.4	-	0	0	76.6	0.1	-3.0	0	0	0	0	0	-113.1
		622482.9	4748446.9	303.3	1911.2	0	DEN	63	83.7	0	0	0	76.6	0.2	-3.0	0	0	0	0	0	9.8
	T47	622482.9	4748446.9	303.3	1911.2	0	DEN	125	92.0	0	0	0	76.6	0.8	1.8	0	0	0	0	0	12.8
		622482.9	4748446.9	303.3	1911.2	0	DEN	250	96.1	0	0	0	76.6	2.0	0.1	0	0	0	0	0	17.4
R11TO47		622482.9	4748446.9	303.3	1911.2	0	DEN	500	98.4		0	0	76.6	3.7	-0.9	0	0	0	0	0	19.0
		622482.9	4748446.9	303.3	1911.2	0	DEN	1000	97.0	0	0	0	76.6	7.0	-0.9	0	0	0	0	0	14.3
		622482.9	4748446.9	303.3	1911.2	0	DEN	2000	90.2	0	0	0	76.6	18.5	-0.9	0	0	0	0	0	-4.0
		622482.9	4748446.9	303.3	1911.2	0	DEN	4000	85.2	0	0	0	76.6	62.6	-0.9	0	0	0	0	0	-53.2
		622482.9	4748446.9	303.3	1911.2	0	DEN	8000	81.9	0	0	0	76.6	223.4	-0.9	0	0	0	0	0	-217.2
		623160.0	4748650.4	302.1	2355.6	0	DEN	32	-39.4	0	0	0	78.4	0.1	-3.0	0	0	0	0	0	-114.9
		623160.0	4748650.4	302.1	2355.6	0	DEN	63	83.7	0	0	0	78.4	0.3	-3.0	0	0	0	0	0	8.0
		623160.0	4748650.4	302.1	2355.6	0	DEN	125	92.0	0	0	0	78.4	1.0	1.8	0	0	0	0	0	10.8
		623160.0	4748650.4	302.1	2355.6	0	DEN	250	96.1	0	0	0	78.4	2.5	0.1	0	0	0	0	0	15.1
R11TO45	T45	623160.0	4748650.4	302.1	2355.6	0	DEN	500	98.4	0	0	0	78.4	4.5	-0.9	0	0	0	0	0	16.3
		623160.0	4748650.4	302.1	2355.6	0	DEN	1000	97.0	0	0	0	78.4	8.6	-0.9	0	0	0	0	0	10.8
		623160.0	4748650.4	302.1	2355.6	0	DEN	2000	90.2	0	0	0	78.4	22.8	-0.9	0	0	0	0	0	-10.1
		623160.0	4748650.4	302.1	2355.6	0	DEN	4000	85.2	0	0	0	78.4	77.2	-0.9	0	0	0	0	0	-69.5
		623160.0	4748650.4	302.1	2355.6	0	DEN	8000	81.9	0	0	0	78.4	275.3	-0.9	0	0	0	0	0	-271.0

		624153.0	4749242.9	300.3	3125.4	0	DEN	22	-39.4	0	0	0	00.0	0.1	-3.0	0	0	0	0	0	-117.4
		624153.0	4749242.9	300.3	3125.4	0	DEN	32 63	83.6		0	0	80.9 80.9	0.1	-3.0	0	0	0	0	0	
											0	Ŭ		-		0	0	0		- 0	0.0
		624153.0	4749242.9	300.3	3125.4	0	DEN	125	91.7	0		0	80.9	1.3	1.8				0	- 0	7.7
D44T046	T4.6	624153.0	4749242.9	300.3	3125.4	0	DEN	250	98.7	0	0	0	80.9	3.3	0.1	0	0	0	0	-0	14.5
R11TO16	T16	624153.0	4749242.9	300.3	3125.4	0	DEN	500	100.8		0	0	80.9	6.0	-0.9	0	0	0	0	0	14.8
		624153.0	4749242.9	300.3	3125.4	0	DEN	1000	98.3	0	0	0	80.9	11.4	-0.9	0	0	0	0	- 0	6.9
		624153.0	4749242.9	300.3	3125.4	0	DEN	2000	92.8	-	0	0	80.9	30.2	-0.9	0	0	0	0	0	-17.4
		624153.0	4749242.9	300.3	3125.4	0	DEN	4000	85.9	_	0	0	80.9	102.4	-0.9	0	0	0	0	0	-96.5
		624153.0	4749242.9	300.3	3125.4	0	DEN	8000	73.3		0	0	80.9	365.3	-0.9	0	0	0	0	0	-372.0
		624137.0	4748807.0	301.1	3206.3	0	DEN	32	-39.4	-	0	0	81.1	0.1	-3.0	0	0	0	0	0	-117.6
		624137.0	4748807.0	301.1	3206.3	0	DEN	63	83.6	0	0	0	81.1	0.4	-3.0	0	0	0	0	0	5.1
		624137.0	4748807.0	301.1	3206.3	0	DEN	125	91.7	0	0	0	81.1	1.3	1.8	0	0	0	0	0	7.5
		624137.0	4748807.0	301.1	3206.3	0	DEN	250	98.7	0	0	0	81.1	3.3	0.1	0	0	0	0	0	14.2
R11TO14	T14	624137.0	4748807.0	301.1	3206.3	0	DEN	500	100.8	-	0	0	81.1	6.2	-0.9	0	0	0	0	0	14.4
		624137.0	4748807.0	301.1	3206.3	0	DEN	1000	98.3	0	0	0	81.1	11.7	-0.9	0	0	0	0	0	6.4
		624137.0	4748807.0	301.1	3206.3	0	DEN		92.8	-	0	0	81.1	31.0	-0.9	0	0	0	0	0	-18.4
		624137.0	4748807.0	301.1	3206.3	0	DEN	4000	85.9		0	0	81.1	105.1	-0.9	0	0	0	0	0	-99.4
		624137.0	4748807.0	301.1	3206.3	0	DEN	8000	73.3	0	0	0	81.1	374.8	-0.9	0	0	0	0	0	-381.7
		624350.0	4748471.0	301.8	3516.2	0	DEN	32	-39.4		0	0	81.9	0.1	-3.0	0	0	0	0	0	-118.4
		624350.0	4748471.0	301.8	3516.2	0	DEN	63	83.6		0	0	81.9	0.4	-3.0	0	0	0	0	0	4.3
		624350.0	4748471.0	301.8	3516.2	0	DEN	125	91.7	0	0	0	81.9	1.4	1.8	0	0	0	0	0	6.6
		624350.0	4748471.0	301.8	3516.2	0	DEN	250	98.7	0	0	0	81.9	3.7	0.1	0	0	0	0	0	13.0
R11TO44	T44	624350.0	4748471.0	301.8	3516.2	0	DEN	500	100.8	-	0	0	81.9	6.8	-0.9	0	0	0	0	0	13.0
		624350.0	4748471.0	301.8	3516.2	0	DEN	_	98.3	0	0	0	81.9	12.9	-0.9	0	0	0	0	0	4.4
		624350.0	4748471.0	301.8	3516.2	0	DEN		92.8		0	0	81.9	34.0	-0.9	0	0	0	0	0	-22.2
		624350.0	4748471.0	301.8	3516.2	0	DEN	4000	85.9	_	0	0	81.9	115.2	-0.9	0	0	0	0	0	-110.3
		624350.0	4748471.0	301.8	3516.2	0	DEN		73.3		0	0	81.9	411.0	-0.9	0	0	0	0	- 0	-418.7
		624687.0	4749282.7	300.4	3648.6	0	DEN	32	-39.4	-	0	0	82.2	0.1	-3.0	0	0	0	0	0	-118.8
		624687.0	4749282.7	300.4	3648.6	0	DEN	63	83.6		0	0	82.2	0.4	-3.0	0	0	0	0	- 0	3.9
		624687.0	4749282.7	300.4	3648.6	0	DEN	125	91.7	0	0	0	82.2	1.5	1.8	0	0	0	0	- 0	6.2
244-240		624687.0	4749282.7	300.4	3648.6	0	DEN	250	98.7	0	0	0	82.2	3.8	0.1	0	0	0	0	0	12.6
R11TO48	T48	624687.0	4749282.7	300.4	3648.6	0	DEN	500	100.8		0	0	82.2	7.0	-0.9	0	0	0	0	- 0	12.4
		624687.0	4749282.7	300.4	3648.6	0	DEN	1000	98.3	0	0	0	82.2	13.3	-0.9	0	0	0	0	- 0	3.6
		624687.0	4749282.7	300.4	3648.6	0	DEN	2000	92.8	0	0	0	82.2	35.3	-0.9	0	0	0	0	- 0	-23.8
		624687.0 624687.0	4749282.7 4749282.7	300.4 300.4	3648.6 3648.6	0	DEN DEN	4000 8000	85.9 73.3	0	0	0	82.2 82.2	119.6 426.5	-0.9 -0.9	0	0	0	0	0	-115.0 -434.5
										++		0				_		_		0	
		624815.3	4748952.0	301.1	3828.7	0	DEN	32	-39.4		0	0	82.7	0.1	-3.0	0	0	0	0	0	-119.2
		624815.3	4748952.0	301.1	3828.7	0	DEN	63	83.6		0	0	82.7	0.5	-3.0	0	0	0	0	0	3.5
		624815.3 624815.3	4748952.0 4748952.0	301.1 301.1	3828.7 3828.7	0	DEN DEN	125 250	91.7 98.7	0	0	0	82.7 82.7	1.6 4.0	1.8 0.1	0	0	0	0	0	5.7 12.0
D11TO42	T42						1				0	0						0	0	0	
R11TO43	T43	624815.3	4748952.0	301.1	3828.7	0	DEN	500	100.8	+ +	0	0	82.7	7.4	-0.9	0	·		_	0	11.7
		624815.3	4748952.0	301.1	3828.7	0	DEN DEN	1000 2000	98.3	0	0	0	82.7 82.7	14.0 37.0	-0.9	0	0	0	0	0	2.5
		624815.3	4748952.0 4748952.0	301.1 301.1	3828.7 3828.7	0	DEN	4000	92.8 85.9		0	0	82.7	125.5	-0.9 -0.9	0	0	0	0	0	-26.0 -121.3
		624815.3 624815.3	4748952.0 4748952.0	301.1	3828.7	0	DEN	8000	73.3	0	0	0	82.7	447.5	-0.9	0	0	0	0	0	-121.3 -456.0
		024815.3	4746952.0	201.1	3028./	U	DEIN	8000	/3.3	U	U	U	02./	447.5	-0.9	U	U	U	U	U	-436.0

		622487.1	4753392.7	304.0	3934.7	0	DEN	32	-39.4	0	0	0	82.9	0.1	-3.1	0	0 0		0	0	-119.4
		622487.1	4753392.7	304.0	3934.7	0	DEN	63	83.6	0	0	0	82.9	0.5	-3.1	0	0 0		0	0	3.3
		622487.1	4753392.7	304.0	3934.7	0	DEN	125	91.7	0	0	0	82.9	1.6	1.8	0	0 0		0	0	5.4
		622487.1	4753392.7	304.0	3934.7	0	DEN	250	98.7	0	0	0	82.9	4.1	0.1	0	0 0		0	0	11.6
R11TO84	T84	622487.1	4753392.7	304.0	3934.7	0	DEN	500	100.8	0	0	0	82.9	7.6	-0.9	0	0 0		0	0	11.2
		622487.1	4753392.7	304.0	3934.7	0	DEN	1000	98.3	0	0	0	82.9	14.4	-0.9	0	0 0		0	0	1.9
		622487.1	4753392.7	304.0	3934.7	0	DEN	2000	92.8	0	0	0	82.9	38.0	-0.9	0	0 0		0	0	-27.2
		622487.1	4753392.7	304.0	3934.7	0	DEN	4000	85.9	0	0	0	82.9	128.9	-0.9	0	0 0)	0	0	-125.0
		622487.1	4753392.7	304.0	3934.7	0	DEN	8000	73.3	0	0	0	82.9	459.9	-0.9	0	0 0		0	0	-468.6
		624829.2	4748510.0	302.0	3955.1	0	DEN	32	-39.4	0	0	0	82.9	0.1	-3.1	0	0 0		0	0	-119.4
		624829.2	4748510.0	302.0	3955.1	0	DEN	63	83.6	0	0	0	82.9	0.5	-3.1	0	0 0)	0	0	3.3
		624829.2	4748510.0	302.0	3955.1	0	DEN	125	91.7	0	0	0	82.9	1.6	1.8	0	0 0		0	0	5.4
		624829.2	4748510.0	302.0	3955.1	0	DEN	250	98.7	0	0	0	82.9	4.1	0.1	0	0 0		0	0	11.6
R11TO22	T22	624829.2	4748510.0	302.0	3955.1	0	DEN	500	100.8	0	0	0	82.9	7.6	-0.9	0	0 0)	0	0	11.2
		624829.2	4748510.0	302.0	3955.1	0	DEN	1000	98.3	0	0	0	82.9	14.5	-0.9	0	0 0)	0	0	1.8
		624829.2	4748510.0	302.0	3955.1	0	DEN	2000	92.8	0	0	0	82.9	38.2	-0.9	0	0 0		0	0	-27.4
		624829.2	4748510.0	302.0	3955.1	0	DEN	4000	85.9	0	0	0	82.9	129.6	-0.9	0	0 0)	0	0	-125.7
		624829.2	4748510.0	302.0	3955.1	0	DEN	8000	73.3	0	0	0	82.9	462.3	-0.9	0	0 0		0	0	-471.0
		623216.4	4753159.8	304.0	4053.5	0	DEN	32	-39.4	0	0	0	83.2	0.1	-3.1	0	0 0)	0	0	-119.5
		623216.4	4753159.8	304.0	4053.5	0	DEN	63	83.6	0	0	0	83.2	0.5	-3.1	0	0 0		0	0	3.1
		623216.4	4753159.8	304.0	4053.5	0	DEN	125	91.7	0	0	0	83.2	1.7	1.7	0	0 0)	0	0	5.1
		623216.4	4753159.8	304.0	4053.5	0	DEN	250	98.7	0	0	0	83.2	4.2	0.0	0	0 0		0	0	11.3
R11TO89	T89	623216.4	4753159.8	304.0	4053.5	0	DEN	500	100.8	0	0	0	83.2	7.8	-0.9	0	0 0		0	0	10.8
		623216.4	4753159.8	304.0	4053.5	0	DEN	1000	98.3	0	0	0	83.2	14.8	-0.9	0	0 0)	0	0	1.3
		623216.4	4753159.8	304.0	4053.5	0	DEN	2000	92.8	0	0	0	83.2	39.2	-0.9	0	0 0		0	0	-28.6
		623216.4	4753159.8	304.0	4053.5	0	DEN	4000	85.9	0	0	0	83.2	132.8	-0.9	0	0 0)	0	0	-129.1
		623216.4	4753159.8	304.0	4053.5	0	DEN	8000	73.3	0	0	0	83.2	473.8	-0.9	0	0 0)	0	0	-482.7
		619935.0	4753628.0	304.0	4065.7	0	DEN	32	-39.4	0	0	0	83.2	0.1	-3.2	0	0 0		0	0	-119.6
		619935.0	4753628.0	304.0	4065.7	0	DEN	63	83.6	0	0	0	83.2	0.5	-3.2	0	0 0)	0	0	3.1
	T42	619935.0	4753628.0	304.0	4065.7	0	DEN	125	91.7	0	0	0	83.2	1.7	1.7	0	0 0)	0	0	5.1
		619935.0	4753628.0	304.0	4065.7	0	DEN	250	98.7	0	0	0	83.2	4.2	0.0	0	0 0)	0	0	11.2
R11TO42		619935.0	4753628.0	304.0	4065.7	0	DEN	500	100.8	0	0	0	83.2	7.8	-0.9	0	0 0		0	0	10.7
		619935.0	4753628.0	304.0	4065.7	0	DEN	1000	98.3	0	0	0	83.2	14.9	-0.9	0	0 0		0	0	1.2
		619935.0	4753628.0	304.0	4065.7	0	DEN		92.8	0	0	0	83.2	39.3	-0.9	0	0 0	-	0	0	-28.7
		619935.0	4753628.0	304.0	4065.7	0	DEN	4000	85.9		0	0	83.2	133.2	-0.9	0	0 0		0	0	-129.6
		619935.0	4753628.0	304.0	4065.7	0	DEN	8000	73.3	0	0	0	83.2	475.2	-0.9	0	0 0		0	0	-484.1
		625004.0	4748242.0	302.6	4208.5	0	DEN	32	-39.4	0	0	0	83.5	0.1	-3.3	0	0 0		0	0	-119.8
		625004.0	4748242.0	302.6	4208.5	0	DEN	63	83.6	0	0	0	83.5	0.5	-3.3	0	0 0		0	0	2.9
		625004.0	4748242.0	302.6	4208.5	0	DEN	125	91.7	0	0	0	83.5	1.7	1.7	0	0 0	+	0	0	4.8
		625004.0	4748242.0	302.6	4208.5	0	DEN	250	98.7	0	0	0	83.5	4.4	0.0	0	0 0	+	0	0	10.8
R11TO21	T21	625004.0	4748242.0	302.6	4208.5	0	DEN	500	100.8	0	0	0	83.5	8.1	-1.0	0	0 0		0	0	10.2
		625004.0	4748242.0	302.6	4208.5	0	DEN		98.3	0	0	0	83.5	15.4	-1.0	0	0 0		0	0	0.4
		625004.0	4748242.0	302.6	4208.5	0	DEN	2000	92.8	0	0	0	83.5	40.7	-1.0	0	0 0	-	0	0	-30.4
		625004.0	4748242.0	302.6	4208.5	0	DEN	4000	85.9	0	0	0	83.5	137.9	-1.0	0	0 0		0	0	-134.5
		625004.0	4748242.0	302.6	4208.5	0	DEN	8000	73.3	0	0	0	83.5	491.9	-1.0	0	0 0		0	0	-501.1

		625177.0	4747970.0	302.9	4470.4	0	DEN	32	-39.4	0	0	0	84.0	0.1	-3.4	0	0 0)	0	0	-120.1
		625177.0	4747970.0	302.9	4470.4	0	DEN	63	83.6	0	0	0	84.0	0.5	-3.4	0	0 0		0	0	2.5
		625177.0	4747970.0	302.9	4470.4	0	DEN	125	91.7	0	0	0	84.0	1.8	1.7	0	0 0	_	0	0	4.2
		625177.0	4747970.0	302.9	4470.4	0	DEN	250	98.7	0	0	0	84.0	4.7	-0.1	0	0 0	1	0	0	10.1
R11TO61	T61	625177.0	4747970.0	302.9	4470.4	0	DEN	500	100.8	0	0	0	84.0	8.6	-1.0	0	0 0	_	0	0	9.2
	.02	625177.0	4747970.0	302.9	4470.4	0	DEN	1000	98.3	0	0	0	84.0	16.4	-1.0	0	0 0	1	0	0	-1.0
		625177.0	4747970.0	302.9	4470.4	0	DEN	2000	92.8	0	0	0	84.0	43.2	-1.0	0	0 0	1	0	0	-33.4
		625177.0	4747970.0	302.9	4470.4	0	DEN	4000	85.9	0	0	0	84.0	146.5	-1.0	0	0 0	1	0	0	-143.6
		625177.0	4747970.0	302.9	4470.4	0	DEN	8000	73.3	0	0	0	84.0	522.5	-1.0	0	0 0		0	0	-532.2
		617981.7	4753042.5	302.4	4532.3	0	DEN	32	-39.4	0	0	0	84.1	0.1	-3.4	0	0 0)	0	0	-120.2
		617981.7	4753042.5	302.4	4532.3	0	DEN	63	83.6	0	0	0	84.1	0.6	-3.4	0	0 0)	0	0	2.4
		617981.7	4753042.5	302.4	4532.3	0	DEN	125	91.7	0	0	0	84.1	1.9	1.6	0	0 0)	0	0	4.1
		617981.7	4753042.5	302.4	4532.3	0	DEN	250	98.7	0	0	0	84.1	4.7	-0.1	0	0 0)	0	0	9.9
R11TO98	T98	617981.7	4753042.5	302.4	4532.3	0	DEN	500	100.8	0	0	0	84.1	8.7	-1.0	0	0 0	1	0	0	9.0
		617981.7	4753042.5	302.4	4532.3	0	DEN	1000	98.3	0	0	0	84.1	16.6	-1.0	0	0 0	1	0	0	-1.4
		617981.7	4753042.5	302.4	4532.3	0	DEN	2000	92.8	0	0	0	84.1	43.8	-1.0	0	0 0)	0	0	-34.1
		617981.7	4753042.5	302.4	4532.3	0	DEN	4000	85.9	0	0	0	84.1	148.5	-1.0	0	0 0		0	0	-145.7
		617981.7	4753042.5	302.4	4532.3	0	DEN	8000	73.3	0	0	0	84.1	529.7	-1.0	0	0 0)	0	0	-539.5
		623047.0	4746843.0	260.0	3497.4	0	DEN	32	-39.4	0	0	0	81.9	0.1	-3.8	0	0 0)	0	0	-117.6
		623047.0	4746843.0	260.0	3497.4	0	DEN	63	57.5	0	0	0	81.9	0.4	-3.8	0	0 0		0	0	-21.0
		623047.0	4746843.0	260.0	3497.4	0	DEN	125	72.4	0	0	0	81.9	1.4	1.5	0	0 0		0	0	-12.4
Mohawk05(V82-1.65		623047.0	4746843.0	260.0	3497.4	0	DEN	250	82.7	0	0	0	81.9	3.6	-0.2	0	0 0	+	0	0	-2.6
MW-Vestas-103.2	MH05	623047.0	4746843.0	260.0	3497.4	0	DEN	500	90.4	0	0	0	81.9	6.7	-1.1	0	0 0		0	0	2.9
dBA&Hu		623047.0	4746843.0	260.0	3497.4	0	DEN	1000	96.8	0	0	0	81.9	12.8	-1.1	0	0 0		0	0	3.3
		623047.0	4746843.0	260.0	3497.4	0	DEN	2000	97.2	0	0	0	81.9	33.8	-1.1	0	0 0		0	0	-17.3
		623047.0	4746843.0	260.0	3497.4	0	DEN	4000	96.0	0	0	0	81.9	114.6	-1.1	0	0 0		0	0	-99.3
		623047.0	4746843.0	260.0	3497.4	0	DEN	8000	89.2	0	0	0	81.9	408.8	-1.1	0	0 0)	0	0	-400.3
		622632.0	4746480.0	260.4	3603.5	0	DEN	32	-39.4	0	0	0	82.1	0.1	-3.9	0	0 0)	0	0	-117.8
		622632.0	4746480.0	260.4	3603.5	0	DEN	63	57.5	0	0	0	82.1	0.4	-3.9	0	0 0)	0	0	-21.2
		622632.0	4746480.0	260.4	3603.5	0	DEN	125	72.4	0	0	0	82.1	1.5	1.5	0	0 0)	0	0	-12.7
Mohawk02(V82-1.65		622632.0	4746480.0	260.4	3603.5	0	DEN	250	82.7	0	0	0	82.1	3.8	-0.2	0	0 0)	0	0	-3.0
MW-Vestas-103.2	MH02	622632.0	4746480.0	260.4	3603.5	0	DEN	500	90.4	0	0	0	82.1	6.9	-1.2	0	0 0)	0	0	2.5
dBA&Hu		622632.0	4746480.0	260.4	3603.5	0	DEN	1000	96.8	0	0	0	82.1	13.2	-1.2	0	0 0)	0	0	2.7
		622632.0	4746480.0	260.4	3603.5	0	DEN	2000	97.2	0	0	0	82.1	34.8	-1.2	0	0 0)	0	0	-18.6
		622632.0	4746480.0	260.4	3603.5	0	DEN	4000	96.0	0	0	0	82.1	118.1	-1.2	0	0 0)	0	0	-103.1
		622632.0	4746480.0	260.4	3603.5	0	DEN	8000	89.2	0	0	0	82.1	421.2	-1.2	0	0 0)	0	0	-413.0
		623297.0	4746604.0	260.0	3836.6	0	DEN	32	-39.4	0	0	0	82.7	0.1	-4.0	0	0 0)	0	0	-118.2
		623297.0	4746604.0	260.0	3836.6	0	DEN	63	57.5	0	0	0	82.7	0.5	-4.0	0	0 0)	0	0	-21.6
		623297.0	4746604.0	260.0	3836.6	0	DEN	125	72.4	0	0	0	82.7	1.6	1.5	0	0 0)	0	0	-13.3
Mohawk04(V82-1.65		623297.0	4746604.0	260.0	3836.6	0	DEN	250	82.7	0	0	0	82.7	4.0	-0.2	0	0 0)	0	0	-3.7
MW-Vestas-103.2	MH04	623297.0	4746604.0	260.0	3836.6	0	DEN	500	90.4	0	0	0	82.7	7.4	-1.2	0	0 0)	0	0	1.5
dBA&Hu		623297.0	4746604.0	260.0	3836.6	0	DEN	1000	96.8	0	0	0	82.7	14.0	-1.2	0	0 0)	0	0	1.3
		623297.0	4746604.0	260.0	3836.6	0	DEN	2000	97.2	0	0	0	82.7	37.1	-1.2	0	0 0		0	0	-21.3
		623297.0	4746604.0	260.0	3836.6	0	DEN	4000	96.0	0	0	0	82.7	125.7	-1.2	0	0 0		0	0	-111.2
																					-440.7

		622002.0	4754670.0	200.0	F242.0	_	DEN	22	20.4		_	_	05.5	0.0	2.0	_			_		424.2
		622983.8	4754678.9	299.0	5312.9	0	DEN	32	-39.4	0	0	0	85.5	0.2	-3.8	0	_	0	0	0	
		622983.8	4754678.9	299.0	5312.9	0	DEN	63	83.6	0	0	0	85.5	0.6	-3.8	0	0	0		0	
		622983.8	4754678.9	299.0	5312.9	0	DEN	125	91.7	0	0	0	85.5	2.2	1.5	0	0	0	0	0	2.5
		622983.8	4754678.9	299.0	5312.9	0	DEN	250	98.7	0	0	0	85.5	5.5	-0.2	0	0	0	0	- 0	7.8
R11TO65	T65	622983.8	4754678.9	299.0	5312.9	0	DEN	500	100.8	0	0	0	85.5	10.2	-1.1	0		0	0	0	0.2
		622983.8	4754678.9	299.0	5312.9	0	DEN	1000	98.3	0	0	0	85.5	19.4	-1.1	0	0	0	0	0	3.3
		622983.8	4754678.9	299.0	5312.9	0	DEN	2000	92.8	0	0	0	85.5	51.3	-1.1	0	0	0	0	0	12.5
		622983.8	4754678.9	299.0	5312.9	0	DEN	4000	85.9	0	0	0	85.5	174.1	-1.1	0	0	0	0	0	-172.6
		622983.8	4754678.9	299.0	5312.9	0	DEN	8000	73.3	0	0	0	85.5	621.0	-1.1	0		0	0	0	-632.0
		626835.9	4748915.1	299.0	5826.4	0	DEN	32	-39.4	0	0	0	86.3	0.2	-4.0	0	0	0	0	0	
		626835.9	4748915.1	299.0	5826.4	0	DEN	63	83.6	0	0	0	86.3	0.7	-4.0	0	0	0	0	0	0.6
		626835.9	4748915.1	299.0	5826.4	0	DEN	125	91.7	0	0	0	86.3	2.4	1.5	0	0	0	0	0	1.5
		626835.9	4748915.1	299.0	5826.4	0	DEN	250	98.7	0	0	0	86.3	6.1	-0.2	0	0	0	0	0	6.5
R11TO49	T49	626835.9	4748915.1	299.0	5826.4	0	DEN	500	100.8	0	0	0	86.3	11.2	-1.2	0	0	0	0	0	4.5
		626835.9	4748915.1	299.0	5826.4	0	DEN	1000	98.3	0	0	0	86.3	21.3	-1.2	0	0	0	0	0	-8.1
		626835.9	4748915.1	299.0	5826.4	0	DEN	2000	92.8	0	0	0	86.3	56.3	-1.2	0	0	0	0	0	-48.6
		626835.9	4748915.1	299.0	5826.4	0	DEN	4000	85.9	0	0	0	86.3	190.9	-1.2	0	0	0	0	0	-190.1
		626835.9	4748915.1	299.0	5826.4	0	DEN	8000	73.3	0	0	0	86.3	681.0	-1.2	0	0	0	0	0	-692.8
		620379.6	4755516.1	299.0	5832.8	0	DEN	32	-39.4	0	0	0	86.3	0.2	-4.0	0	0	0	0	0	-121.9
		620379.6	4755516.1	299.0	5832.8	0	DEN	63	83.6	0	0	0	86.3	0.7	-4.0	0	0	0	0	0	0.6
		620379.6	4755516.1	299.0	5832.8	0	DEN	125	91.7	0	0	0	86.3	2.4	1.5	0	0	0	0	0	1.5
		620379.6	4755516.1	299.0	5832.8	0	DEN	250	98.7	0	0	0	86.3	6.1	-0.2	0	0	0	0	0	6.5
R11TO19	T19	620379.6	4755516.1	299.0	5832.8	0	DEN	500	100.8	0	0	0	86.3	11.2	-1.2	0	0	0	0	0	4.4
		620379.6	4755516.1	299.0	5832.8	0	DEN	1000	98.3	0	0	0	86.3	21.3	-1.2	0	0	0	0	0	-8.1
		620379.6	4755516.1	299.0	5832.8	0	DEN	2000	92.8	0	0	0	86.3	56.4	-1.2	0	0	0	0	0	-48.7
		620379.6	4755516.1	299.0	5832.8	0	DEN	4000	85.9	0	0	0	86.3	191.1	-1.2	0	0	0	0	0	-190.4
		620379.6	4755516.1	299.0	5832.8	0	DEN	8000	73.3	0	0	0	86.3	681.8	-1.2	0	0	0	0	0	-693.6
		618390.0	4754915.0	299.0	5841.0	0	DEN	32	-39.4	0	0	0	86.3	0.2	-4.0	0	0	0	0	0	-121.9
		618390.0	4754915.0	299.0	5841.0	0	DEN	63	83.6	0	0	0	86.3	0.7	-4.0	0	0	0	0	0	0.6
		618390.0	4754915.0	299.0	5841.0	0	DEN	125	91.7	0	0	0	86.3	2.4	1.5	0	0	0	0	0	1.5
		618390.0	4754915.0	299.0	5841.0	0	DEN	250	98.7	0	0	0	86.3	6.1	-0.2	0	0	0	0	0	
R11TO82	T82	618390.0	4754915.0	299.0	5841.0	0	DEN	500	100.8	0	0	0	86.3	11.3	-1.2	0	0	0	0	0	4.4
		618390.0	4754915.0	299.0	5841.0	0	DEN	1000	98.3	0	0	0	86.3	21.4	-1.2	0	0	0	0	0	-8.2
		618390.0	4754915.0	299.0	5841.0	0	DEN	2000	92.8	0	0	0	86.3	56.4	-1.2	0	0	0	0	0	-48.8
		618390.0	4754915.0	299.0	5841.0	0	DEN	4000	85.9	0	0	0	86.3	191.4	-1.2	0	0	0	0	0	-190.6
		618390.0	4754915.0	299.0	5841.0	0	DEN	8000	73.3	0	0	0	86.3	682.7	-1.2	0	0	0	0	0	-694.5
		622661.0	4745529.0	263.9	4489.4	0	DEN	32	-39.4	0	0	0	84.0	0.1	-4.3	0	0	0	0	0	-119.3
		622661.0	4745529.0	263.9	4489.4	0	DEN	63	57.5	0	0	0	84.0	0.5	-4.3	0	0	0	0	0	-22.8
		622661.0	4745529.0	263.9	4489.4	0	DEN	125	72.4	0	0	0	84.0	1.8	1.4	0	0	0	0	0	-14.9
Mohawk06(V82-1.65		622661.0	4745529.0	263.9	4489.4	0	DEN	250	82.7	0	0	0	84.0	4.7	-0.3	0	0	0	0	0	-5.7
MW-Vestas-103.2	MH06	622661.0	4745529.0	263.9	4489.4	0	DEN	500	90.4	0	0	0	84.0	8.7	-1.3	0	0	0	0	0	-1.0
dBA&Hu		622661.0	4745529.0	263.9	4489.4	0	DEN	1000	96.8	0	0	0	84.0	16.4	-1.3	0	0	0	0	0	
		622661.0	4745529.0	263.9	4489.4	0	DEN	2000	97.2	0	0	0	84.0	43.4	-1.3	0	0	0	0	0	-28.9
		622661.0	4745529.0	263.9	4489.4	0	DEN	4000	96.0	0	0	0	84.0	147.1	-1.3	0	0	0	0	0	-133.9
		622661.0	4745529.0	263.9	4489.4	0	DEN	8000	89.2	0	0	0	84.0	524.7	-1.3	0	0	0	0	0	-518.3
		022001.0	1773323.0	203.3	T-103.4	U	DLIN	3000	05.2	U	U	J	07.0	327.7	1.5	J	U	9	J	J	510.5

		622026.6	4754670.6	470.7	F250.0		DEN	22	50.6		_	_	05.4	0.0	5.0	_	0 40		. I		22.0
		622836.6	4754678.6	178.7 178.7	5259.9 5259.9	0	DEN DEN	32 63	50.6 72.8	0	0	0	85.4 85.4	0.2	-5.9 -5.9	0			_	_	33.9
		622836.6	4754678.6					125			0	Ŭ				0	0 4.8) (
T		622836.6 622836.6	4754678.6	178.7 178.7	5259.9	0	DEN		87.9 94.4	0	0	0	85.4	2.2	3.8	0	0 3.8		_		-4.5 -1.3
Transformer2	CTO		4754678.6		5259.9	-	DEN	250		1	0	0	85.4	5.5	1.0	0			4—		
(100/133/166	ST2	622836.6	4754678.6	178.7 178.7	5259.9 5259.9	0	DEN DEN	500	99.8 97.0	0	0	0	85.4 85.4	10.1 19.2	-1.7	0	0 4.8		-		1.2
ONAN/ONAF/ONAF MVA)		622836.6	4754678.6			0	DEN	1000 2000				0		50.8	-1.8	0			+		46.1
		622836.6	4754678.6	178.7 178.7	5259.9 5259.9	0	DEN		93.2	0	0	0	85.4 85.4	172.4	-1.8 -1.8	0	0 4.8) (46.1 172.8
		622836.6 622836.6	4754678.6 4754678.6	178.7	5259.9	0	DEN	4000 8000	88.0 78.9	0	0	0	85.4	614.8	-1.8	0	0 4.8		_		524.3
		614974.0	4747470.0	283.2	6498.1	0	DEN	32	-39.4	0	0	0	87.3	0.2	-4.6	0	0 4.8		4	_	122.3
		614974.0	4747470.0	283.2	6498.1	0	DEN	63	82.4	0	0	0	87.3	0.2	-4.6	0	0 0) (_	-1.1
		614974.0	4747470.0	283.2	6498.1	0	DEN	125	93.0	0	0	0	87.3	2.7	1.3	0	0 0		_		1.8
		614974.0	4747470.0	283.2	6498.1	0	DEN	250	96.0	0	0	0	87.3	6.8	-0.4	0	0 0		+	_	2.4
SWT-2.221-101 - Grand	GREPT58	614974.0	4747470.0	283.2	6498.1	0	DEN	500	99.8	0	0	0	87.3	12.5	-1.4	0	0 0				1.4
Renewable Energy Project	GREP136	614974.0	4747470.0	283.2	6498.1	0	DEN	1000	100.1	0	0	0	87.3	23.8	-1.4	0	0 0) (-9.6
		614974.0	4747470.0	283.2	6498.1	0	DEN	2000	96.5	0	0	0	87.3	62.8	-1.4	0			+	_	-9.6 -52.2
		614974.0	4747470.0	283.2	6498.1	0	DEN	4000	89.6	0	0	0	87.3	212.9	-1.4	0	0 0) (_	209.2
		614974.0	4747470.0	283.2	6498.1	0	DEN	8000	85.2	0	0	0	87.3	759.5	-1.4	0	0 0) (_	760.2
		621410.0	4756122.0	299.0	6407.1	0	DEN	32	-39.4	0	0	0	87.1	0.2	-4.2	0		_	+	_	122.5
		621410.0	4756122.0	299.0	6407.1	0	DEN	63	83.6	0	0	0	87.1	0.2	-4.2	0			4—	_	-0.1
		621410.0	4756122.0	299.0	6407.1	0	DEN	125	91.7	0	0	0	87.1	2.6	1.4	0	0 0		_		0.5
		621410.0	4756122.0	299.0	6407.1	0	DEN	250	98.7	0	0	0	87.1	6.7	-0.3	0	0 0) (_	5.2
R11TO13	T13	621410.0	4756122.0	299.0	6407.1	0	DEN	500	100.8	0	0	0	87.1	12.4	-1.3	0			-		2.6
KIIIOIS	113	621410.0	4756122.0	299.0	6407.1	0	DEN	1000	98.3	0	0	0	87.1	23.4	-1.3	0			+		11.0
		621410.0	4756122.0	299.0	6407.1	0	DEN	2000	92.8	0	0	0	87.1	61.9	-1.3	0	0 0) (55.0
		621410.0	4756122.0	299.0	6407.1	0	DEN	4000	85.9	0	0	0	87.1	210.0	-1.3	0	0 0) (_	209.9
		621410.0	4756122.0	299.0	6407.1	0	DEN	8000	73.3	0	0	0	87.1	748.9	-1.3	0			_		761.5
		614680.0	4748176.0	282.6	6573.3	0	DEN	32	-39.4	0	0	0	87.4	0.2	-4.6	0	0 0		+	_	122.4
		614680.0	4748176.0	282.6	6573.3	0	DEN	63	82.4	0	0	0	87.4	0.8	-4.6	0	0 0		+	_	-1.2
		614680.0	4748176.0	282.6	6573.3	0	DEN	125	93.0	0	0	0	87.4	2.7	1.3	0	0 0				1.6
		614680.0	4748176.0	282.6	6573.3	0	DEN	250	96.0	0	0	0	87.4	6.9	-0.4	0			+		2.2
SWT-2.221-101 - Grand	GREPT60	614680.0	4748176.0	282.6	6573.3	0	DEN	500	99.8	0	0	0	87.4	12.7	-1.4	0	0 0		+	_	1.1
Renewable Energy Project	G.1.2. 100	614680.0	4748176.0	282.6	6573.3	0	DEN	1000	100.1	0	0	0	87.4	24.0	-1.4	0	0 0) (_	-9.9
		614680.0	4748176.0	282.6	6573.3	0	DEN	2000	96.5	0	0	0	87.4	63.5	-1.4	0	0 0) (53.0
		614680.0	4748176.0	282.6	6573.3	0	DEN	4000	89.6	0	0	0	87.4	215.4	-1.4	0			4—	_	211.8
		614680.0	4748176.0	282.6	6573.3	0	DEN	8000	85.2	0	0	0	87.4	768.3	-1.4	0	0 0) (_	769.1
		614750.0	4747811.0	284.5	6601.8	0	DEN	32	-39.4	0	0	0	87.4	0.2	-4.6	0	0 0	() () -1	122.4
		614750.0	4747811.0	284.5	6601.8	0	DEN	63	82.4	0	0	0	87.4	0.8	-4.6	0			_		-1.2
		614750.0	4747811.0	284.5	6601.8	0	DEN	125	93.0	0	0	0	87.4	2.7	1.3	0	0 0			_	1.6
		614750.0	4747811.0	284.5	6601.8	0	DEN	250	96.0	0	0	0	87.4	6.9	-0.4	0	0 0		+	_	2.1
SWT-2.221-101 - Grand	GREPT61	614750.0	4747811.0	284.5	6601.8	0	DEN	500	99.8	0	0	0	87.4	12.7	-1.4	0	0 0) (1.1
Renewable Energy Project		614750.0	4747811.0	284.5	6601.8	0	DEN	1000	100.1	0	0	0	87.4	24.1	-1.4	0			+		10.1
		614750.0	4747811.0	284.5	6601.8	0	DEN	2000	96.5	0	0	0	87.4	63.8	-1.4	0	0 0		+	_	53.3
		614750.0	4747811.0	284.5	6601.8	0	DEN	4000	89.6	0	0	0	87.4	216.3	-1.4	0	0 0) (212.8
		614750.0	4747811.0	284.5	6601.8	0	DEN	8000	85.2	0	0	0	87.4	771.6	-1.4	0	0 0) (772.4
		52.750.0	011.0	_0	5551.0	Ŭ		5500	55.2		Ü	v	υ , , τ	1.0			, J	<u> </u>			

		627539.7	4748974.3	299.0	6516.8	0	DEN	32	-39.4	0	0	0	87.3	0.2	-4.2	0	0 0)	0	0	-122.7
		627539.7	4748974.3	299.0	6516.8	0	DEN	63	83.6	0	0	0	87.3	0.8	-4.2	0	0 0		0	0	-0.2
		627539.7	4748974.3	299.0	6516.8	0	DEN	125	91.7	0	0	0	87.3	2.7	1.4	0	0 0		0	0	0.3
		627539.7	4748974.3	299.0	6516.8	0	DEN	250	98.7	0	0	0	87.3	6.8	-0.3	0		-	0	0	4.9
R11TO23	T23	627539.7	4748974.3	299.0	6516.8	0	DEN	500	100.8	0	0	0	87.3	12.6	-1.3	0	0 0	+	0	0	2.2
	.25	627539.7	4748974.3	299.0	6516.8	0	DEN	1000	98.3	0	0	0	87.3	23.8	-1.3	0	0 0		0	0	-11.5
		627539.7	4748974.3	299.0	6516.8	0	DEN	2000	92.8	0	0	0	87.3	63.0	-1.3	0			0	0	-56.2
		627539.7	4748974.3	299.0	6516.8	0	DEN	4000	85.9	0	0	0	87.3	213.6	-1.3	0	0 0		0	0	-213.7
		627539.7	4748974.3	299.0	6516.8	0	DEN	8000	73.3	0	0	0	87.3	761.7	-1.3	0	0 0		0	0	-774.4
		614705.0	4747338.0	281.3	6796.2	0	DEN	32	-39.4	0	0	0	87.6	0.2	-4.6	0	0 0)	0	0	-122.6
		614705.0	4747338.0	281.3	6796.2	0	DEN	63	82.4	0	0	0	87.6	0.8	-4.6	0			0	0	-1.4
		614705.0	4747338.0	281.3	6796.2	0	DEN	125	93.0	0	0	0	87.6	2.8	1.3	0	0 0		0	0	1.3
		614705.0	4747338.0	281.3	6796.2	0	DEN	250	96.0	0	0	0	87.6	7.1	-0.4	0	0 0	+	0	0	1.7
SWT-2.221-101 - Grand	GREPT62	614705.0	4747338.0	281.3	6796.2	0	DEN	500	99.8	0	0	0	87.6	13.1	-1.4	0	0 0	1	0	0	0.4
Renewable Energy Project	OKEI 102	614705.0	4747338.0	281.3	6796.2	0	DEN	1000	100.1	0	0	0	87.6	24.9	-1.4	0			0	0	-11.0
		614705.0	4747338.0	281.3	6796.2	0	DEN	2000	96.5	0	0	0	87.6	65.7	-1.4	0	0 0	1	0	0	-55.4
		614705.0	4747338.0	281.3	6796.2	0	DEN	4000	89.6	0	0	0	87.6	222.7	-1.4	0	0 0		0	0	-219.4
		614705.0	4747338.0	281.3	6796.2	0	DEN	8000	85.2	0	0	0	87.6	794.4	-1.4	0	0 0		0	0	-795.4
		621127.0	4756402.0	299.2	6678.2	0	DEN	32	-39.4	0	0	0	87.5	0.2	-4.3	0)	0	0	-122.8
		621127.0	4756402.0	299.2	6678.2	0	DEN	63	83.6	0	0	0	87.5	0.8	-4.3	0	0 0		0	0	-0.4
		621127.0	4756402.0	299.2	6678.2	0	DEN	125	91.7	0	0	0	87.5	2.7	1.4	0	0 0		0	0	0.1
		621127.0	4756402.0	299.2	6678.2	0	DEN	250	98.7	0	0	0	87.5	7.0	-0.3	0	0 0	-	0	0	4.5
R11TO12	T12	621127.0	4756402.0	299.2	6678.2	0	DEN	500	100.8	0	0	0	87.5	12.9	-1.3	0	0 0	_	0	0	1.7
KIITOIZ	112	621127.0	4756402.0	299.2	6678.2	0	DEN	1000	98.3	0	0	0	87.5	24.4	-1.3	0	0 0		0	0	-12.3
		621127.0	4756402.0	299.2	6678.2	0	DEN	2000	92.8	0	0	0	87.5	64.5	-1.3	0	0 0	_	0	0	-58.0
		621127.0	4756402.0	299.2	6678.2	0	DEN	4000	85.9	0	0	0	87.5	218.8	-1.3	0	<u> </u>		0	0	-219.2
		621127.0	4756402.0	299.2	6678.2	0	DEN	8000	73.3	0	0	0	87.5	780.6	-1.3	0	0 0		0	0	-793.5
		623355.0	4745400.0	268.2	4893.7	0	DEN	32	-39.4	0	0	0	84.8	0.2	-4.4	0	0 0		0	0	-119.9
		623355.0	4745400.0	268.2	4893.7	0	DEN	63	57.5	0	0	0	84.8	0.6	-4.4	0	0 0		0	0	-23.4
		623355.0	4745400.0	268.2	4893.7	0	DEN	125	72.4	0	0	0	84.8	2.0	1.3	0			0	0	-15.8
Mohawk01(V82-1.65		623355.0	4745400.0	268.2	4893.7	0	DEN	250	82.7	0	0	0	84.8	5.1	-0.4	0	0 0	-	0	0	-6.8
MW-Vestas-103.2	MH01	623355.0	4745400.0	268.2	4893.7	0	DEN	500	90.4	0	0	0	84.8	9.4	-1.3	0	0 0	_	0	0	-2.5
dBA&Hu	02	623355.0	4745400.0	268.2	4893.7	0	DEN	1000	96.8	0	0	0	84.8	17.9	-1.3	0)	0	0	-4.6
45716114		623355.0	4745400.0	268.2	4893.7	0	DEN	2000	97.2	0	0	0	84.8	47.3	-1.3	0	0 0		0	0	-33.6
		623355.0	4745400.0	268.2	4893.7	0	DEN	4000	96.0	0	0	0	84.8	160.4	-1.3	0	0 0		0	0	-147.8
		623355.0	4745400.0	268.2	4893.7	0	DEN	8000	89.2	0	0	0	84.8	572.0	-1.3	0	0 0		0	0	-566.2
		627752.2	4750238.9	299.0	6705.6	0	DEN	32	-39.4	0	0	0	87.5	0.2	-4.3	0	0 0)	0	0	-122.9
		627752.2	4750238.9	299.0	6705.6	0	DEN	63	83.6	0	0	0	87.5	0.8	-4.3	0	0 0		0	0	-0.5
		627752.2	4750238.9	299.0	6705.6	0	DEN	125	91.7	0	0	0	87.5	2.8	1.4	0	0 0	_	0	0	0.0
		627752.2	4750238.9	299.0	6705.6	0	DEN	250	98.7	0	0	0	87.5	7.0	-0.3	0		<u> </u>	0	0	4.5
R11TO24	T24	627752.2	4750238.9	299.0	6705.6	0	DEN	500	100.8	0	0	0	87.5	12.9	-1.3	0			0	0	1.6
1111024	127	627752.2	4750238.9	299.0	6705.6	0	DEN	1000	98.3	0	0	0	87.5	24.5	-1.3	0	0 0		0	0	-12.5
		627752.2	4750238.9	299.0	6705.6	0	DEN	2000	92.8	0	0	n	87.5	64.8	-1.3	0	0 0		0	1	-58.2
		627752.2	4750238.9	299.0	6705.6	0	DEN	4000	85.9	0	0	0	87.5	219.7	-1.3	0	0 0		0	1	-220.1
		627752.2	4750238.9	299.0	6705.6	0	DEN	8000	73.3	0	0	0	87.5	783.8	-1.3	0			0	0	-796.7
		021132.2	+130230.5	233.0	0,05.0	U	PLIN	5000	13.3	U	J	U	07.3	703.0	-1.0	U	J C	<u>'</u>	٧	v	750.7

		614355.0	4748118.0	284.5	6902.9	0	DEN	32	-39.4	0	0	0	87.8	0.2	-4.6	0	0 0)	0	0	-122.8
	1	614355.0	4748118.0	284.5	6902.9	0	DEN	63	82.4	0	0	0	87.8	0.8	-4.6	0	0 0	_	0	0	-1.6
	1	614355.0	4748118.0	284.5	6902.9	0	DEN	1	93.0	0	0	0	87.8	2.8	1.3	0	0 0		0	0	1.1
	1	614355.0	4748118.0	284.5	6902.9	0	DEN	250	96.0		0	0	87.8	7.2	-0.4	0			_	0	1.4
SWT-2.221-101 - Grand	GREPT57	614355.0	4748118.0	284.5	6902.9	0	DEN	1	99.8	-	0	0	87.8	13.3	-1.4	0	0 0		0	0	0.1
Renewable Energy Project	J. 137	614355.0	4748118.0	284.5	6902.9	0	DEN	-	100.1	0	0	0	87.8	25.2	-1.4	0	0 0	1	0	0	-11.5
	I	614355.0	4748118.0	284.5	6902.9	0	DEN		96.5	0	0	0	87.8	66.7	-1.4	0		1	0	0	-56.6
	1	614355.0	4748118.0	284.5	6902.9	0	DEN		89.6	+-+	0	0	87.8	226.2	-1.4	0		1	0	0	-223.0
	I	614355.0	4748118.0	284.5	6902.9	0	DEN		85.2	0	0	0	87.8	806.8	-1.4	0	0 0		0	0	-808.0
		623974.0	4745737.0	265.5	4935.7	0	DEN	32	-39.4	0	0	0	84.9	0.2	-4.5	0	0 0)	0	0	-120.0
	I	623974.0	4745737.0	265.5	4935.7	0	DEN		57.5	0	0	0	84.9	0.6	-4.5	0			0	0	-23.5
	1	623974.0	4745737.0	265.5	4935.7	0	DEN		72.4	0	0	0	84.9	2.0	1.3	0	0 0)	0	0	-15.8
	I	623974.0	4745737.0	265.5	4935.7	0	DEN	250	82.7	0	0	0	84.9	5.1	-0.4	0	0 0)	0	0	-7.0
Mohawk03(V82-1.65 MW-	MH03	623974.0	4745737.0	265.5	4935.7	0	DEN		90.4	0	0	0	84.9	9.5	-1.3	0	0 0	1	0	0	-2.6
Vestas-103.2 dBA&Hu	1	623974.0	4745737.0	265.5	4935.7	0	DEN		96.8	0	0	0	84.9	18.1	-1.3	0		1	0	0	-4.8
	I	623974.0	4745737.0	265.5	4935.7	0	DEN		97.2	0	0	0	84.9	47.7	-1.3	0	0 0)	0	0	-34.0
	I	623974.0	4745737.0	265.5	4935.7	0	DEN		96.0	0	0	0	84.9	161.7	-1.3	0	0 0		0	0	-149.3
	I	623974.0	4745737.0	265.5	4935.7	0	DEN		89.2	0	0	0	84.9	576.9	-1.3	0	0 0)	0	0	-571.2
		620503.9	4756520.8	299.1	6820.0	0	DEN	32	-39.4	0	0	0	87.7	0.2	-4.3	0	0 0)	0	0	-123.0
	1	620503.9	4756520.8	299.1	6820.0	0	DEN	63	83.6	+-+	0	0	87.7	0.8	-4.3	0	0 0	_	0	0	-0.6
	I	620503.9	4756520.8	299.1	6820.0	0	DEN		91.7	0	0	0	87.7	2.8	1.4	0	0 0		0	0	-0.2
	1	620503.9	4756520.8	299.1	6820.0	0	DEN	250	98.7	0	0	0	87.7	7.1	-0.3	0	0 0	+	_	0	4.2
R11TO91	T91	620503.9	4756520.8	299.1	6820.0	0	DEN	-	100.8	0	0	0	87.7	13.1	-1.3	0	0 0		0	0	1.3
	- I	620503.9	4756520.8	299.1	6820.0	0	DEN	-	98.3	0	0	0	87.7	24.9	-1.3	0	0 0	+	0	0	-13.0
	I	620503.9	4756520.8	299.1	6820.0	0	DEN	-	92.8	0	0	0	87.7	65.9	-1.3	0	0 0	_	0	0	-59.5
	1	620503.9	4756520.8	299.1	6820.0	0	DEN	1	85.9		0	0	87.7	223.5	-1.3	0	0 0	_	0	0	-224.0
	1	620503.9	4756520.8	299.1	6820.0	0	DEN	8000	73.3	0	0	0	87.7	797.1	-1.3	0	0 0)	0	0	-810.2
		614326.0	4747732.0	284.5	7030.6	0	DEN	32	-39.4	0	0	0	87.9	0.2	-4.7	0	0 0)	0	0	-122.9
	I	614326.0	4747732.0	284.5	7030.6	0	DEN	63	82.4	0	0	0	87.9	0.9	-4.7	0	0 0)	0	0	-1.7
	1	614326.0	4747732.0	284.5	7030.6	0	DEN	125	93.0	0	0	0	87.9	2.9	1.3	0	0 0)	0	0	0.9
	I	614326.0	4747732.0	284.5	7030.6	0	DEN	250	96.0	0	0	0	87.9	7.3	-0.4	0	0 0)	0	0	1.2
SWT-2.221-101 - Grand	GREPT59	614326.0	4747732.0	284.5	7030.6	0	DEN		99.8	0	0	0	87.9	13.6	-1.4	0	0 0)	0	0	-0.3
Renewable Energy Project	1	614326.0	4747732.0	284.5	7030.6	0	DEN	1000	100.1	0	0	0	87.9	25.7	-1.4	0	0 0)	0	0	-12.2
	I	614326.0	4747732.0	284.5	7030.6	0	DEN	2000	96.5	0	0	0	87.9	67.9	-1.4	0	0 0	,	0	0	-58.0
	1	614326.0	4747732.0	284.5	7030.6	0	DEN	4000	89.6	0	0	0	87.9	230.4	-1.4	0	0 0	,	0	0	-227.3
	I	614326.0	4747732.0	284.5	7030.6	0	DEN	8000	85.2	0	0	0	87.9	821.7	-1.4	0	0 0)	0	0	-823.1
		620836.0	4756609.3	299.9	6889.1	0	DEN	32	-39.4	0	0	0	87.8	0.2	-4.3	0	0 0	j	0	0	-123.1
	I	620836.0	4756609.3	299.9	6889.1	0	DEN	63	83.6	-	0	0	87.8	0.8	-4.3	0	0 0		0	0	-0.7
	I	620836.0	4756609.3	299.9	6889.1	0	DEN	125	91.7	0	0	0	87.8	2.8	1.4	0	0 0	+	0	0	-0.3
	I	620836.0	4756609.3	299.9	6889.1	0	DEN	250	98.7	0	0	0	87.8	7.2	-0.3	0	0 0)	0	0	4.1
R11TO11	T11	620836.0	4756609.3	299.9	6889.1	0	DEN	-	100.8	+-+	0	0	87.8	13.3	-1.3	0)	0	0	1.1
	I	620836.0	4756609.3	299.9	6889.1	0	DEN	 	98.3	0	0	0	87.8	25.2	-1.3	0	0 0)	0	0	-13.4
	I	620836.0	4756609.3	299.9	6889.1	0	DEN	1	92.8	0	0	0	87.8	66.6	-1.3	0	0 0	_	0	0	-60.2
l l	1	-	4756609.3	299.9	6889.1	0	DEN	1	85.9	0	0	0	87.8	225.8	-1.3	0	0 0)	0	0	-226.3
l l		620836.0	4/30009.3	233.3	00003.1	U	DLIN.	70001	05.5		O,	U	07.0	223.0	1.0	-				0	

		620998.0	4756851.0	300.4	7127.2	0	DEN	32	-39.4	0	0	0	88.1	0.2	-4.4	0	0	0	0	0	-123.3
		620998.0	4756851.0	300.4	7127.2	0	DEN	63	83.6	0	0	0	88.1	0.9	-4.4	0	0	0	0	0	
		620998.0	4756851.0	300.4	7127.2	0	DEN	125	91.7	0	0	0	88.1	2.9	1.4	0	0	0	0	0	
		620998.0	4756851.0	300.4	7127.2	0	DEN	250	98.7	0	0	0	88.1	7.4	-0.3	0	0	0	0		ł
R11TO41	T41	620998.0	4756851.0	300.4	7127.2	0	DEN	500	100.8	0	0	0	88.1	13.7	-1.3	0	0	0	0	0	0.3
		620998.0	4756851.0	300.4	7127.2	0	DEN	1000	98.3	0	0	0	88.1	26.1	-1.3	0	0	0	0	0	
		620998.0	4756851.0	300.4	7127.2	0	DEN	2000	92.8	0	0	0	88.1	68.9	-1.3	0	0	0	0		-62.8
		620998.0	4756851.0	300.4	7127.2	0	DEN	4000	85.9	0	0	0	88.1	233.6	-1.3	0	0	0	0	_	-234.4
		620998.0	4756851.0	300.4	7127.2	0	DEN	8000	73.3	0	0	0	88.1	833.0	-1.3	0	0	0	0	0	-846.5
		620828.0	4757122.0	301.3	7401.7	0	DEN	32	-39.4	0	0	0	88.4	0.2	-4.4	0	0	0	0	0	-123.6
		620828.0	4757122.0	301.3	7401.7	0	DEN	63	83.6	0	0	0	88.4	0.9	-4.4	0	0	0	0	0	-1.3
		620828.0	4757122.0	301.3	7401.7	0	DEN	125	91.7	0	0	0	88.4	3.0	1.4	0	0	0	0	0	-1.1
		620828.0	4757122.0	301.3	7401.7	0	DEN	250	98.7	0	0	0	88.4	7.7	-0.4	0	0	0	0	0	2.9
R11TO72	T72	620828.0	4757122.0	301.3	7401.7	0	DEN	500	100.8	0	0	0	88.4	14.3	-1.3	0	0	0	0	0	-0.5
		620828.0	4757122.0	301.3	7401.7	0	DEN	1000	98.3	0	0	0	88.4	27.1	-1.3	0	0	0	0	0	-15.8
		620828.0	4757122.0	301.3	7401.7	0	DEN	2000	92.8	0	0	0	88.4	71.5	-1.3	0	0	0	0	0	-65.8
		620828.0	4757122.0	301.3	7401.7	0	DEN	4000	85.9	0	0	0	88.4	242.6	-1.3	0	0	0	0	0	-243.7
		620828.0	4757122.0	301.3	7401.7	0	DEN	8000	73.3	0	0	0	88.4	865.1	-1.3	0	0	0	0	0	-878.9
		623038.4	4758881.0	299.0	9366.4	0	DEN	32	-39.4	0	0	0	90.4	0.3	-4.8	0	0	0	0	0	-125.4
		623038.4	4758881.0	299.0	9366.4	0	DEN	63	83.6	0	0	0	90.4	1.1	-4.8	0	0	0	0	0	-3.2
		623038.4	4758881.0	299.0	9366.4	0	DEN	125	91.7	0	0	0	90.4	3.8	1.3	0	0	0	0	0	-3.8
		623038.4	4758881.0	299.0	9366.4	0	DEN	250	98.7	0	0	0	90.4	9.8	-0.5	0	0	0	0	0	-1.0
R11TO37	T37	623038.4	4758881.0	299.0	9366.4	0	DEN	500	100.8	0	0	0	90.4	18.1	-1.4	0	0	0	0	0	-6.3
		623038.4	4758881.0	299.0	9366.4	0	DEN	1000	98.3	0	0	0	90.4	34.3	-1.4	0	0	0	0	0	-25.0
		623038.4	4758881.0	299.0	9366.4	0	DEN	2000	92.8	0	0	0	90.4	90.5	-1.4	0	0	0	0	0	-86.7
		623038.4	4758881.0	299.0	9366.4	0	DEN	4000	85.9	0	0	0	90.4	306.9	-1.4	0	0	0	0	0	-310.0
		623038.4	4758881.0	299.0	9366.4	0	DEN	8000	73.3	0	0	0	90.4	1094.8	-1.4	0	0	0	0	0	-1110.5
		623259.5	4758989.9	299.0	9521.3	0	DEN	32	-39.4	0	0	0	90.6	0.3	-4.8	0	0	0	0	0	-125.5
		623259.5	4758989.9	299.0	9521.3	0	DEN	63	83.6	0	0	0	90.6	1.2	-4.8	0	0	0	0	0	-3.3
		623259.5	4758989.9	299.0	9521.3	0	DEN	125	91.7	0	0	0	90.6	3.9	1.2	0	0	0	0	0	-4.0
		623259.5	4758989.9	299.0	9521.3	0	DEN	250	98.7	0	0	0	90.6	9.9	-0.5	0	0	0	0	0	-1.3
R11TO10	T10	623259.5	4758989.9	299.0	9521.3	0	DEN	500	100.8	0	0	0	90.6	18.4	-1.4	0	0	0	0	0	-6.7
		623259.5	4758989.9	299.0	9521.3	0	DEN	1000	98.3	0	0	0	90.6	34.8	-1.4	0	0	0	0	0	-25.7
		623259.5	4758989.9	299.0	9521.3	0	DEN	2000	92.8	0	0	0	90.6	92.0	-1.4	0	0	0	0	0	-88.4
		623259.5	4758989.9	299.0	9521.3	0	DEN	4000	85.9	0	0	0	90.6		-1.4	0	0	0	0	0	-315.3
		623259.5	4758989.9	299.0	9521.3	0	DEN	8000	73.3	0	0	0	90.6	1112.9	-1.4	0	0	0	0	0	-1128.7
		631359.0	4751252.0	270.1	10404.7	0	DEN	32	-38.7	0	0	0	91.3	0.3	-5.1	0	0	0	0		123.2
		631359.0	4751252.0	270.1	10404.7	0	DEN	63	86.0	0	0	0	91.3	1.3	-5.1	0	0	0	0		2.0
		631359.0	4751252.0	270.1	10404.7	0	DEN	125	91.0	0	0	0	91.3	4.3	1.1	0	0	0	0	_	-5.8
WF01(Wainfleet Wind		631359.0	4751252.0	270.1	10404.7	0	DEN	250	98.5	0	0	0	91.3	10.9	-0.6	0	0	0	0		9.1
Energy Project Vesta	WF01	631359.0	4751252.0	270.1	10404.7	0	DEN	500	95.4	0	0	0	91.3	20.1	-1.5	0	0	0	0		11.5
		631359.0	4751252.0	270.1	10404.7	0	DEN	1000	98.5	0	0	0	91.3	38.1	-1.5	0	0	0	0	0	-29.4
		631359.0	4751252.0	270.1	10404.7	0	DEN	2000	97.7	0	0	0	91.3	100.6	-1.5	0	0	0	0	0	-92.7
		631359.0	4751252.0	270.1	10404.7	0	DEN	4000	96.7	0	0	0	91.3	341.0	-1.5	0	0	0	0	0	-334.1
		631359.0	4751252.0	270.1	10404.7	0	DEN	8000	92.1	0	0	0	91.3	1216.1	-1.5	0	0	0	0	0	-1213.8

		615270.0	4756417.0	250.0	8854.1	0	DEN	32	-39.4	0	0	0	89.9	0.3	-5.2	0	0 0)	0	0	-124.4
		615270.0	4756417.0	250.0	8854.1	0	DEN	63	87.6	0	0	0	89.9	1.1	-5.2	0	0 0	_	0	0	1.8
		615270.0	4756417.0	250.0	8854.1	0	DEN	125	95.2	0	0	0	89.9	3.6	1.1	0	0 0	_	0	0	0.5
		615270.0	4756417.0	250.0	8854.1	0	DEN	250	94.3	0	0	0	89.9	9.2	-0.6	0	0 0	_	0	0	-4.3
Rosa Flora Turbine	RFT	615270.0	4756417.0	250.0	8854.1	0	DEN	500	97.1	0	0	0	89.9	17.1	-1.6	0	0 0	4—	0	0	-8.4
11000 11010 1010110		615270.0	4756417.0	250.0	8854.1	0	DEN	1000	98.9	0	0	0	89.9	32.4	-1.6	0	0 0		0	0	-21.9
		615270.0	4756417.0	250.0	8854.1	0	DEN	2000	94.6	0	0	0	89.9	85.6	-1.6	0	0 0		0	0	-79.4
		615270.0	4756417.0	250.0	8854.1	0	DEN	4000	83.1	0	0	0	89.9	290.1	-1.6	0	0 0		0	0	-295.4
		615270.0	4756417.0	250.0	8854.1	0	DEN	8000	75.8	0	0	0	89.9	1034.9	-1.6	0	0 0		0	0	-1047.5
		631758.0	4750750.0	270.9	10740.0	0	DEN	32	-38.7	0	0	0	91.6	0.3	-5.2	0	0 0)	0	0	-125.5
		631758.0	4750750.0	270.9	10740.0	0	DEN	63	86.0	0	0	0	91.6	1.3	-5.2	0	0 0)	0	0	-1.8
		631758.0	4750750.0	270.9	10740.0	0	DEN	125	91.0	0	0	0	91.6	4.4	1.1	0	0 0)	0	0	-6.2
14/502/14/ : (I . 14/: I		631758.0	4750750.0	270.9	10740.0	0	DEN	250	98.5	0	0	0	91.6	11.2	-0.6	0	0 0)	0	0	-3.7
WF02(Wainfleet Wind	WF02	631758.0	4750750.0	270.9	10740.0	0	DEN	500	95.4	0	0	0	91.6	20.7	-1.5	0	0 0)	0	0	-15.4
Energy Project Vesta		631758.0	4750750.0	270.9	10740.0	0	DEN	1000	98.5	0	0	0	91.6	39.3	-1.5	0	0 0)	0	0	-30.9
		631758.0	4750750.0	270.9	10740.0	0	DEN	2000	97.7	0	0	0	91.6	103.8	-1.5	0	0 0)	0	0	-96.2
		631758.0	4750750.0	270.9	10740.0	0	DEN	4000	96.7	0	0	0	91.6	352.0	-1.5	0	0 0)	0	0	-345.3
		631758.0	4750750.0	270.9	10740.0	0	DEN	8000	92.1	0	0	0	91.6	1255.3	-1.5	0	0 0)	0	0	-1253.3
		631921.0	4750541.0	271.3	10884.7	0	DEN	32	-38.7	0	0	0	91.7	0.3	-5.2	0	0 0	j	0	0	-125.6
		631921.0	4750541.0	271.3	10884.7	0	DEN	63	86.0	0	0	0	91.7	1.3	-5.2	0	0 0)	0	0	-1.9
		631921.0	4750541.0	271.3	10884.7	0	DEN	125	91.0	0	0	0	91.7	4.5	1.1	0	0 0)	0	0	-6.3
WF03(Wainfleet Wind		631921.0	4750541.0	271.3	10884.7	0	DEN	250	98.5	0	0	0	91.7	11.4	-0.6	0	0 0)	0	0	-4.0
,	WF03	631921.0	4750541.0	271.3	10884.7	0	DEN	500	95.4	0	0	0	91.7	21.0	-1.6	0	0 0)	0	0	-15.8
Energy Project Vesta		631921.0	4750541.0	271.3	10884.7	0	DEN	1000	98.5	0	0	0	91.7	39.8	-1.6	0	0 0)	0	0	-31.5
		631921.0	4750541.0	271.3	10884.7	0	DEN	2000	97.7	0	0	0	91.7	105.2	-1.6	0	0 0)	0	0	-97.7
		631921.0	4750541.0	271.3	10884.7	0	DEN	4000	96.7	0	0	0	91.7	356.7	-1.6	0	0 0)	0	0	-350.2
		631921.0	4750541.0	271.3	10884.7	0	DEN	8000	92.1	0	0	0	91.7	1272.2	-1.6	0	0 0)	0	0	-1270.3
		622816.6	4760851.0	304.0	11263.2	0	DEN	32	-39.4	0	0	0	92.0	0.4	-5.0	0	0 0)	0	0	-126.8
		622816.6	4760851.0	304.0	11263.2	0	DEN	63	83.6	0	0	0	92.0	1.4	-5.0	0	0 0)	0	0	-4.8
		622816.6	4760851.0	304.0	11263.2	0	DEN	125	91.7	0	0	0	92.0	4.6	1.2	0	0 0)	0	0	-6.2
		622816.6	4760851.0	304.0	11263.2	0	DEN	250	98.7	0	0	0	92.0	11.8	-0.5	0	0 0)	0	0	-4.6
R11TS09	T95	622816.6	4760851.0	304.0	11263.2	0	DEN	500	100.8	0	0	0	92.0	21.7	-1.5	0	0 0)	0	0	-11.5
		622816.6	4760851.0	304.0	11263.2	0	DEN	1000	98.3	0	0	0	92.0	41.2	-1.5	0	0 0)	0	0	-33.4
		622816.6	4760851.0	304.0	11263.2	0	DEN	2000	92.8	0	0	0	92.0	108.8	-1.5	0	0 0)	0	0	-106.6
		622816.6	4760851.0	304.0	11263.2	0	DEN	4000	85.9	0	0	0	92.0	369.1	-1.5	0	0 0)	0	0	-373.7
		622816.6	4760851.0	304.0	11263.2	0	DEN	8000	73.3	0	0	0	92.0	1316.5	-1.5	0	0 0)	0	0	-1333.7
		632706.0	4748817.0	272.1	11674.4	0	DEN	32	-38.7	0	0	0	92.3	0.4	-5.2	0	0 0)	0	0	-126.2
		632706.0	4748817.0	272.1	11674.4	0	DEN	63	86.0	0	0	0	92.3	1.4	-5.2	0	0 0)	0	0	-2.5
		632706.0	4748817.0	272.1	11674.4	0	DEN	125	91.0	0	0	0	92.3	4.8	1.1	0	0 0	4—	0	0	-7.3
WF05(Wainfleet Wind		632706.0	4748817.0	272.1	11674.4	0	DEN	250	98.5	0	0	0	92.3	12.2	-0.6	0	0 0		0	0	-5.4
Energy Project Vesta	WF05	632706.0	4748817.0	272.1	11674.4	0	DEN	500	95.4	0	0	0	92.3	22.5	-1.6	0	0 0		0	0	-17.9
Lineigy i roject vesta		632706.0	4748817.0	272.1	11674.4	0	DEN	1000	98.5	0	0	0	92.3	42.7	-1.6	0	0 0		0	0	-35.0
		632706.0	4748817.0	272.1	11674.4	0	DEN	2000	97.7	0	0	0	92.3	112.8	-1.6	0	0 0	4—	0	0	-105.9
		632706.0	4748817.0	272.1	11674.4	0	DEN	4000	96.7	0	0	0	92.3	382.6	-1.6	0	0 0		0	0	-376.6
		632706.0	4748817.0	272.1	11674.4	0	DEN	8000	92.1	0	0	0	92.3	1364.5	-1.6	0	0 0)	0	0	-1363.2

1		622750.0	4740200.0	272.0	44750.0	_	DEN	22	20.7		_	_	02.4	0.4	- al	_			_	0 436
		632750.0	4748389.0	273.8	11759.2	0	DEN	32	-38.7	0	0	0	92.4	0.4	-5.2	0			-	0 -126.2
		632750.0	4748389.0	273.8	11759.2	0	DEN	63	86.0	0	0	0	92.4	1.4	-5.2	0	0 (_	0 -2.6
		632750.0	4748389.0	273.8	11759.2	0	DEN	125	91.0	0	0	0	92.4	4.8	1.1	0	0 (0	0 -7.4
WF04(Wainfleet Wind		632750.0	4748389.0	273.8	11759.2	0	DEN	250	98.5	0	0	0	92.4	12.3	-0.6	0	0 (0	0 -5.6
Energy Project Vesta	WF04	632750.0	4748389.0	273.8	11759.2	0	DEN	500	95.4	0	0	0	92.4	22.7	-1.6	0		-		0 -18.1
6, 3,555		632750.0	4748389.0	273.8	11759.2	0	DEN	1000	98.5	0	0	0	92.4	43.0	-1.6	0	0 (1	0	0 -35.3
		632750.0	4748389.0	273.8	11759.2	0	DEN	2000	97.7	0	0	0	92.4	113.6	-1.6	0	0 (+	_	0 -106.8
		632750.0	4748389.0	273.8	11759.2	0	DEN	4000	96.7	0	0	0	92.4	385.3	-1.6	0	0 (0	0 -379.5
		632750.0	4748389.0	273.8	11759.2	0	DEN	8000	92.1	0	0	0	92.4	1374.4	-1.6	0	0 (,	0 -1373.
		616789.8	4762576.1	304.0	13544.8	0	DEN	32	-39.4	0	0	0	93.6	0.4	-5.1	0	0 (_	_	0 -128.3
		616789.8	4762576.1	304.0	13544.8	0	DEN	63	83.6	0	0	0	93.6	1.6	-5.1	0	0 ()	0 -6.5
		616789.8	4762576.1	304.0	13544.8	0	DEN	125	91.7	0	0	0	93.6	5.6	1.1	0		_	_	0 -8.6
		616789.8	4762576.1	304.0	13544.8	0	DEN	250	98.7	0	0	0	93.6	14.1	-0.6	0	0 (1	0	0 -8.5
R11TO09	T09	616789.8	4762576.1	304.0	13544.8	0	DEN	500	100.8	0	0	0	93.6	26.1	-1.5	0	0 (0	0 -17.4
		616789.8	4762576.1	304.0	13544.8	0	DEN	1000	98.3	0	0	0	93.6	49.5	-1.5	0	0 (-	0	0 -43.3
		616789.8	4762576.1	304.0	13544.8	0	DEN	2000	92.8	0	0	0	93.6	130.9	-1.5	0			۷	0 -130.2
		616789.8	4762576.1	304.0	13544.8	0	DEN	4000	85.9	0	0	0	93.6	443.9	-1.5	0	0 (۷	0 -450.:
		616789.8	4762576.1	304.0	13544.8	0	DEN	8000	73.3	0	0	0	93.6	1583.1	-1.5	0	0 (9	0 -1601.
		617020.3	4762751.8	304.0	13641.4	0	DEN	32	-39.4	0	0	0	93.7	0.4	-5.2	0			۷	0 -128.4
		617020.3	4762751.8	304.0	13641.4	0	DEN	63	83.6	0	0	0	93.7	1.7	-5.2	0			_	0 -6.6
		617020.3	4762751.8	304.0	13641.4	0	DEN	125	91.7	0	0	0	93.7	5.6	1.1	0	0 (+	_	0 -8.7
		617020.3	4762751.8	304.0	13641.4	0	DEN	250	98.7	0	0	0	93.7	14.2	-0.6	0	0 (0	0 -8.7
R11TO51	T51	617020.3	4762751.8	304.0	13641.4	0	DEN	500	100.8	0	0	0	93.7	26.3	-1.5	0		+	_	0 -17.7
		617020.3	4762751.8	304.0	13641.4	0	DEN	1000	98.3	0	0	0	93.7	49.9	-1.5	0		1	_	0 -43.7
		617020.3	4762751.8	304.0	13641.4	0	DEN	2000	92.8	0	0	0	93.7	131.8	-1.5	0	0 (0	0 -131.2
		617020.3	4762751.8	304.0	13641.4	0	DEN	4000	85.9	0	0	0	93.7	447.0	-1.5	0	0 (0	0 -453.3
		617020.3	4762751.8	304.0	13641.4	0	DEN	8000	73.3	0	0	0	93.7	1594.4	-1.5	0			_	0 -1613.
		621959.7	4761728.0	182.3	12036.0	0	DEN	32	50.6	0	0	0	92.6	0.4	-5.9	0	0 4.8	+	_	0 -41.2
		621959.7	4761728.0	182.3	12036.0	0	DEN	63	72.8	0	0	0	92.6	1.5	-5.9	0	0 4.8	+	0	0 -20.1
		621959.7	4761728.0	182.3	12036.0	0	DEN	125	87.9	0	0	0	92.6	4.9	3.8	0	0 1	1	0	0 -14.4
Transformer1		621959.7	4761728.0	182.3	12036.0	0	DEN	250	94.4	0	0	0	92.6	12.6	0.9	0				0 -15.5
(100/133/166	ST1	621959.7	4761728.0	182.3	12036.0	0	DEN	500	99.8	0	0	0	92.6	23.2	-1.8	0	0 4.8	1	0	0 -19.0
ONAN/ONAF/ONAF MVA)		621959.7	4761728.0	182.3	12036.0	0	DEN	1000	97.0	0	0	0	92.6	44.0	-1.8	0	0 4.8	1	0	0 -42.6
		621959.7	4761728.0	182.3	12036.0	0	DEN	2000	93.2	0	0	0	92.6	116.3	-1.8	0	0 4.8		0	0 -118.7
		621959.7	4761728.0	182.3	12036.0	0	DEN	4000	88.0	0	0	0	92.6	394.4	-1.8	0			-	0 -402.0
		621959.7	4761728.0	182.3	12036.0	0	DEN	8000	78.9	0	0	0	92.6	1406.8	-1.8	0	0 4.8		0	0 -1423.
		618635.6	4764052.9	304.0	14533.2	0	DEN	32	-39.4	0	0	0	94.2	0.5	-5.2	0	0 (0	0 -128.9
		618635.6	4764052.9	304.0	14533.2	0	DEN	63	83.6	0	0	0	94.2	1.8	-5.2	0			_	0 -7.2
		618635.6	4764052.9	304.0	14533.2	0	DEN	125	91.7	0	0	0	94.2	6.0	1.1	0	0 (1	_	0 -9.6
		618635.6	4764052.9	304.0	14533.2	0	DEN	250	98.7	0	0	0	94.2	15.2	-0.6	0	0 (1	_	0 -10.1
R11TO07	Т07	618635.6	4764052.9	304.0	14533.2	0	DEN	500	100.8	0	0	0	94.2	28.0	-1.6	0	0 (-	0	0 -19.9
		618635.6	4764052.9	304.0	14533.2	0	DEN	1000	98.3	0	0	0	94.2	53.2	-1.6	0		+	,	0 -47.5
		618635.6	4764052.9	304.0	14533.2	0	DEN	2000	92.8	0	0	0	94.2	140.4	-1.6	0	0 (+	,	0 -140.3
		618635.6	4764052.9	304.0	14533.2	0	DEN	4000	85.9	0	0	0	94.2	476.3	-1.6	0	0 (0	0 -483.0
		618635.6	4764052.9	304.0	14533.2	0	DEN	8000	73.3	0	0	0	94.2	1698.7	-1.6	0	0 ()	0	0 -1718.

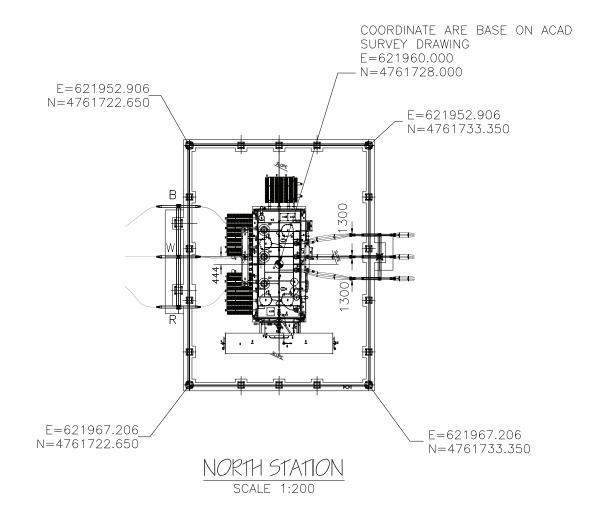
		621356.9	4764542.6	304.0	14820.8	0	DEN	32	-39.4	0	0	0	94.4	0.5	-5.2	0	0 0)	0	0	-129.1
		621356.9	4764542.6	304.0	14820.8	0	DEN	63	83.6	0	0	0	94.4	1.8	-5.2	0	0 0		0	0	-7.4
		621356.9	4764542.6	304.0	14820.8	0	DEN	125	91.7	0	0	0	94.4	6.1	1.1	0	0 0)	0	0	-9.9
		621356.9	4764542.6	304.0	14820.8	0	DEN	250	98.7	0	0	0	94.4	15.5	-0.6	0	0 0)	0	0	-10.6
R11TO75	T75	621356.9	4764542.6	304.0	14820.8	0	DEN	500	100.8	0	0	0	94.4	28.6	-1.6	0	0 0)	0	0	-20.6
		621356.9	4764542.6	304.0	14820.8	0	DEN	1000	98.3	0	0	0	94.4	54.2	-1.6	0	0 0		0	0	-48.8
		621356.9	4764542.6	304.0	14820.8	0	DEN	_	92.8	0	0	0	94.4	143.2	-1.6	0	0 0)	0	0	-143.3
		621356.9	4764542.6	304.0	14820.8	0	DEN	4000	85.9	0	0	0	94.4	485.7	-1.6	0	0 0)	0	0	-492.6
		621356.9	4764542.6	304.0	14820.8	0	DEN	8000	73.3	0	0	0	94.4	1732.3	-1.6	0	0 0)	0	0	-1751.8
		617348.6	4764279.3	304.0	15022.2	0	DEN	32	-39.4	0	0	0	94.5	0.5	-5.2	0	0 0)	0	0	-129.2
		617348.6	4764279.3	304.0	15022.2	0	DEN	63	83.6	0	0	0	94.5	1.8	-5.2	0	0 0)	0	0	-7.5
		617348.6	4764279.3	304.0	15022.2	0	DEN	125	91.7	0	0	0	94.5	6.2	1.1	0	0 0)	0	0	-10.1
		617348.6	4764279.3	304.0	15022.2	0	DEN	250	98.7	0	0	0	94.5	15.7	-0.6	0	0 0)	0	0	-10.9
R11TO39	T39	617348.6	4764279.3	304.0	15022.2	0	DEN	500	100.8	0	0	0	94.5	29.0	-1.6	0	0 0)	0	0	-21.1
		617348.6	4764279.3	304.0	15022.2	0	DEN	1000	98.3	0	0	0	94.5	54.9	-1.6	0	0 0)	0	0	-49.6
		617348.6	4764279.3	304.0	15022.2	0	DEN	2000	92.8	0	0	0	94.5	145.2	-1.6	0	0 0)	0	0	-145.3
		617348.6	4764279.3	304.0	15022.2	0	DEN	4000	85.9	0	0	0	94.5	492.3	-1.6	0	0 0)	0	0	-499.3
		617348.6	4764279.3	304.0	15022.2	0	DEN	8000	73.3	0	0	0	94.5	1755.8	-1.6	0	0 0)	0	0	-1775.5
		624780.5	4764409.8	304.0	15147.4	0	DEN	32	-39.4	0	0	0	94.6	0.5	-5.2	0	0 0)	0	0	-129.3
		624780.5	4764409.8	304.0	15147.4	0	DEN	63	83.6	0	0	0	94.6	1.8	-5.2	0	0 0)	0	0	-7.6
		624780.5	4764409.8	304.0	15147.4	0	DEN	125	91.7	0	0	0	94.6	6.2	1.1	0	0 0)	0	0	-10.2
		624780.5	4764409.8	304.0	15147.4	0	DEN	250	98.7	0	0	0	94.6	15.8	-0.6	0	0 0)	0	0	-11.1
R11TO32	T32	624780.5	4764409.8	304.0	15147.4	0	DEN	500	100.8	0	0	0	94.6	29.2	-1.6	0	0 0)	0	0	-21.4
		624780.5	4764409.8	304.0	15147.4	0	DEN	1000	98.3	0	0	0	94.6	55.4	-1.6	0	0 0)	0	0	-50.1
		624780.5	4764409.8	304.0	15147.4	0	DEN	2000	92.8	0	0	0	94.6	146.4	-1.6	0	0 0)	0	0	-146.6
		624780.5	4764409.8	304.0	15147.4	0	DEN	4000	85.9	0	0	0	94.6	496.4	-1.6	0	0 0)	0	0	-503.5
		624780.5	4764409.8	304.0	15147.4	0	DEN	8000	73.3	0	0	0	94.6	1770.5	-1.6	0	0 0)	0	0	-1790.2
		628498.0	4763100.5	303.1	15301.3	0	DEN	32	-39.4	0	0	0	94.7	0.5	-5.2	0	0 0)	0	0	-129.3
		628498.0	4763100.5	303.1	15301.3	0	DEN	63	83.6	0	0	0	94.7	1.9	-5.2	0	0 0)	0	0	-7.7
		628498.0	4763100.5	303.1	15301.3	0	DEN	125	91.7	0	0	0	94.7	6.3	1.1	0	0 0)	0	0	-10.4
		628498.0	4763100.5	303.1	15301.3	0	DEN	250	98.7	0	0	0	94.7	16.0	-0.6	0	0 0)	0	0	-11.4
R11TO29	T29	628498.0	4763100.5	303.1	15301.3	0	DEN	500	100.8	0	0	0	94.7	29.5	-1.6	0	0 0)	0	0	-21.8
		628498.0	4763100.5	303.1	15301.3	0	DEN	1000	98.3	0	0	0	94.7	56.0	-1.6	0	0 0		0	0	-50.8
		628498.0	4763100.5	303.1	15301.3	0	DEN	2000	92.8	0	0	0	94.7	147.9	-1.6	0	0 0	4—	0	0	-148.2
		628498.0	4763100.5	303.1	15301.3	0	DEN	4000	85.9	0	0	0	94.7	501.4	-1.6	0	0 0		0	0	-508.6
		628498.0	4763100.5	303.1	15301.3	0	DEN	8000	73.3	0	0	0	94.7	1788.4	-1.6	0	0 0		0	0	-1808.3
		626486.0	4764591.4	304.0	15823.5	0	DEN	32	-39.4	0	0	0	95.0	0.5	-5.3	0			0	0	-129.6
		626486.0	4764591.4	304.0	15823.5	0	DEN	63	83.6	0	0	0	95.0	1.9	-5.3	0	0 0	+	0	0	-8.0
		626486.0	4764591.4	304.0	15823.5	0	DEN	125	91.7	0	0	0	95.0	6.5	1.1	0	0 0	4	0	0	-10.9
		626486.0	4764591.4	304.0	15823.5	0	DEN	250	98.7	0	0	0	95.0	16.5	-0.6	0	0 0	_	0	0	-12.2
R11TO34	T34	626486.0	4764591.4	304.0	15823.5	0	DEN	500	100.8	0	0	0	95.0	30.5	-1.6	0	0 0	_	0	0	-23.1
		626486.0	4764591.4	304.0	15823.5	0	DEN	1000	98.3	0	0	0	95.0	57.9	-1.6	0	0 0	4—	0	0	-53.0
		626486.0	4764591.4	304.0	15823.5	0	DEN	2000	92.8	0	0	0	95.0	152.9	-1.6	0	0 0	4—	0	0	-153.5
		626486.0	4764591.4	304.0	15823.5	0	DEN	4000	85.9	0	0	0	95.0	518.5	-1.6	0	0 0		0	0	-526.0
		626486.0	4764591.4	304.0	15823.5	0	DEN	8000	73.3	0	0	0	95.0	1849.5	-1.6	0	0 0)	0	0	-1869.6

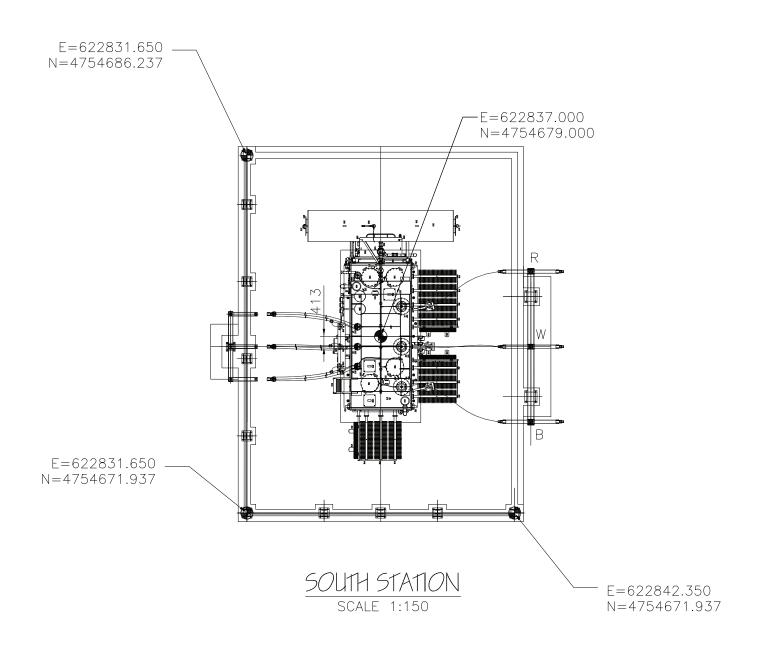
		619944.0	4765594.0	304.0	15909.0	0	DEN	32	-39.4	0	0	0	95.0	0.5	-5.3	0	0 0)	0	0	-129.7
		619944.0	4765594.0	304.0	15909.0	0	DEN	63	83.6	0	0	0	95.0	1.9	-5.3	0	0 0	+	0	0	-8.1
		619944.0	4765594.0	304.0	15909.0	0	DEN	125	91.7	0	0	0	95.0	6.5	1.1	0	0 0)	0	0	-11.0
		619944.0	4765594.0	304.0	15909.0	0	DEN	250	98.7	0	0	0	95.0	16.6	-0.6	0	0 0)	0	0	-12.3
R11TO54	T54	619944.0	4765594.0	304.0	15909.0	0	DEN	500	100.8	0	0	0	95.0	30.7	-1.6	0	0 0)	0	0	-23.3
		619944.0	4765594.0	304.0	15909.0	0	DEN	1000	98.3	0	0	0	95.0	58.2	-1.6	0	0 0)	0	0	-53.3
		619944.0	4765594.0	304.0	15909.0	0	DEN	2000	92.8	0	0	0	95.0	153.7	-1.6	0	0 0)	0	0	-154.4
		619944.0	4765594.0	304.0	15909.0	0	DEN	4000	85.9	0	0	0	95.0	521.3	-1.6	0	0 0)	0	0	-528.9
		619944.0	4765594.0	304.0	15909.0	0	DEN	8000	73.3	0	0	0	95.0	1859.5	-1.6	0	0 0)	0	0	-1879.6
		627163.5	4764483.1	304.0	15968.0	0	DEN	32	-39.4	0	0	0	95.1	0.5	-5.3	0	0 0)	0	0	-129.7
		627163.5	4764483.1	304.0	15968.0	0	DEN	63	83.6	0	0	0	95.1	1.9	-5.3	0	0 0)	0	0	-8.1
		627163.5	4764483.1	304.0	15968.0	0	DEN	125	91.7	0	0	0	95.1	6.6	1.1	0	0 0)	0	0	-11.0
		627163.5	4764483.1	304.0	15968.0	0	DEN	250	98.7	0	0	0	95.1	16.7	-0.6	0	0 0)	0	0	-12.4
R11TO35	T35	627163.5	4764483.1	304.0	15968.0	0	DEN	500	100.8	0	0	0	95.1	30.8	-1.6	0	0 0)	0	0	-23.5
		627163.5	4764483.1	304.0	15968.0	0	DEN	1000	98.3	0	0	0	95.1	58.4	-1.6	0	0 0)	0	0	-53.6
		627163.5	4764483.1	304.0	15968.0	0	DEN	2000	92.8	0	0	0	95.1	154.3	-1.6	0	0 0)	0	0	-155.0
		627163.5	4764483.1	304.0	15968.0	0	DEN	4000	85.9	0	0	0	95.1	523.3	-1.6	0	0 0)	0	0	-530.9
		627163.5	4764483.1	304.0	15968.0	0	DEN	8000	73.3	0	0	0	95.1	1866.4	-1.6	0	0 0)	0	0	-1886.5
		620669.2	4765751.8	304.0	16032.0	0	DEN	32	-39.4	0	0	0	95.1	0.5	-5.3	0	0 0)	0	0	-129.7
		620669.2	4765751.8	304.0	16032.0	0	DEN	63	83.6	0	0	0	95.1	2.0	-5.3	0	0 0)	0	0	-8.2
		620669.2	4765751.8	304.0	16032.0	0	DEN	125	91.7	0	0	0	95.1	6.6	1.1	0	0 0)	0	0	-11.1
		620669.2	4765751.8	304.0	16032.0	0	DEN	250	98.7	0	0	0	95.1	16.7	-0.6	0	0 0)	0	0	-12.5
R11TO38	T38	620669.2	4765751.8	304.0	16032.0	0	DEN	500	100.8	0	0	0	95.1	30.9	-1.6	0	0 0)	0	0	-23.6
		620669.2	4765751.8	304.0	16032.0	0	DEN	1000	98.3	0	0	0	95.1	58.6	-1.6	0	0 0		0	0	-53.9
		620669.2	4765751.8	304.0	16032.0	0	DEN		92.8		0	0	95.1	154.9	-1.6	0	0 0	_	0	0	-155.6
		620669.2	4765751.8	304.0	16032.0	0	DEN	4000	85.9		0	0	95.1	525.4	-1.6	0	0 0		0	0	-533.0
		620669.2	4765751.8	304.0	16032.0	0	DEN	8000	73.3	0	0	0	95.1	1873.9	-1.6	0	0 0	_	0	0	-1894.1
		622985.8	4765745.3	306.3	16135.1	0	DEN	32	-39.4	0	0	0	95.2	0.5	-5.3	0	0 0	_	0	0	-129.8
		622985.8	4765745.3	306.3	16135.1	0	DEN	63	83.6	-	0	0	95.2	2.0	-5.3	0	0 0		0	0	-8.2
		622985.8	4765745.3	306.3	16135.1	0	DEN	125	91.7	0	0	0	95.2	6.6	1.1	0	0 0)	0	0	-11.2
		622985.8	4765745.3	306.3	16135.1	0	DEN	250	98.7	0	0	0	95.2	16.8	-0.6	0	0 0		0	0	-12.7
R11TO01	T01	622985.8	4765745.3	306.3	16135.1	0	DEN	500	100.8	0	0	0	95.2	31.1	-1.6	0	0 0	_	0	0	-23.9
		622985.8	4765745.3	306.3	16135.1	0	DEN		98.3	0	0	0	95.2	59.0	-1.6	0	0 0		0	0	-54.3
		622985.8	4765745.3	306.3	16135.1	0	DEN		92.8	0	0	0	95.2	155.9	-1.6	0	0 0	_	0	0	-156.7
		622985.8	4765745.3	306.3	16135.1	0	DEN	4000	85.9		0	0	95.2	528.7	-1.6	0	0 0		0	0	-536.4
		622985.8	4765745.3	306.3	16135.1	0	DEN	8000	73.3	0	0	0	95.2	1885.9	-1.6	0	0 0	_	0	-	-1906.2
		623639.9	4765719.5	304.0	16200.3	0	DEN	32	-39.4	0	0	0	95.2	0.5	-5.3	0	-	+	0	0	-129.8
		623639.9	4765719.5	304.0	16200.3	0	DEN	63	83.6	0	0	0	95.2	2.0	-5.3	0	0 0		0	0	-8.3
		623639.9	4765719.5	304.0	16200.3	0	DEN	125	91.7	0	0	0	95.2	6.7	1.1	0	0 0	_	0	0	-11.2
D44T0T0		623639.9	4765719.5	304.0	16200.3	0	DEN	250	98.7	0	0	0	95.2	16.9	-0.6	0	0 0		0	0	-12.8
R11TO76	T76	623639.9	4765719.5	304.0	16200.3	0	DEN	500	100.8	0	0	0	95.2	31.2	-1.6	0	0 0		0	0	-24.0
		623639.9	4765719.5	304.0	16200.3	0	DEN	1000	98.3	0	0	0	95.2	59.3	-1.6	0	0 0	_	0	0	-54.6
		623639.9	4765719.5	304.0	16200.3	0	DEN	2000	92.8	0	0	0	95.2	156.6	-1.6	0	0 0	_	0	U	-157.4
		623639.9	4765719.5	304.0	16200.3	0	DEN	4000	85.9	0	0	0	95.2	530.9	-1.6	0	0 0		0	U	-538.6
		623639.9	4765719.5	304.0	16200.3	0	DEN	8000	73.3	0	0	0	95.2	1893.5	-1.6	0	0 0	7	0	0	-1913.8

		617214.7	4765641.9	306.9	16376.9	0	DEN	32	-39.4	0	0	0	95.3	0.5	-5.3	0	0 0)	0	0	-129.9
		617214.7	4765641.9	306.9	16376.9	0	DEN	63	83.6	0	0	0	95.3	2.0	-5.3	0	0 0		0	0	-8.4
		617214.7	4765641.9	306.9	16376.9	0	DEN	125	91.7	0	0	0	95.3	6.7	1.1	0	0 0)	0	0	-11.4
		617214.7	4765641.9	306.9	16376.9	0	DEN	250	98.7	0	0	0	95.3	17.1	-0.6	0	0 0)	0	0	-13.1
R11TO97	Т97	617214.7	4765641.9	306.9	16376.9	0	DEN	500	100.8	0	0	0	95.3	31.6	-1.6	0	0 0)	0	0	-24.5
		617214.7	4765641.9	306.9	16376.9	0	DEN	1000	98.3	0	0	0	95.3	59.9	-1.6	0	0 0		0	0	-55.3
		617214.7	4765641.9	306.9	16376.9	0	DEN	_	92.8	0	0	0	95.3		-1.6	0	0 0		0	0	-159.2
		617214.7	4765641.9	306.9	16376.9	0	DEN	4000	85.9	0	0	0	95.3	536.7	-1.6	0	0 0		0	0	-544.5
		617214.7	4765641.9	306.9	16376.9	0	DEN	8000	73.3	0	0	0	95.3	1914.2	-1.6	0	0 0)	0	0	-1934.6
		629895.5	4763587.6	304.0	16435.3	0	DEN	32	-39.4	0	0	0	95.3	0.5	-5.3	0	0 0)	0	0	-129.9
		629895.5	4763587.6	304.0	16435.3	0	DEN	63	83.6	0	0	0	95.3	2.0	-5.3	0	0 0)	0	0	-8.4
		629895.5	4763587.6	304.0	16435.3	0	DEN	125	91.7	0	0	0	95.3	6.8	1.1	0	0 0)	0	0	-11.5
		629895.5	4763587.6	304.0	16435.3	0	DEN	250	98.7	0	0	0	95.3	17.1	-0.6	0	0 0)	0	0	-13.1
R11TO03	T03	629895.5	4763587.6	304.0	16435.3	0	DEN	500	100.8	0	0	0	95.3	31.7	-1.6	0	0 0)	0	0	-24.6
		629895.5	4763587.6	304.0	16435.3	0	DEN	1000	98.3	0	0	0	95.3	60.1	-1.6	0	0 0)	0	0	-55.5
		629895.5	4763587.6	304.0	16435.3	0	DEN	2000	92.8	0	0	0	95.3	158.8	-1.6	0	0 0)	0	0	-159.8
		629895.5	4763587.6	304.0	16435.3	0	DEN	4000	85.9	0	0	0	95.3	538.6	-1.6	0	0 0)	0	0	-546.4
		629895.5	4763587.6	304.0	16435.3	0	DEN	8000	73.3	0	0	0	95.3	1921.0	-1.6	0	0 0)	0	0	-1941.4
		614544.5	4764911.4	304.7	16528.3	0	DEN	32	-39.4	0	0	0	95.4	0.5	-5.3	0	0 0)	0	0	-130.0
		614544.5	4764911.4	304.7	16528.3	0	DEN	63	83.6	0	0	0	95.4	2.0	-5.3	0	0 0)	0	0	-8.5
		614544.5	4764911.4	304.7	16528.3	0	DEN	125	91.7	0	0	0	95.4	6.8	1.1	0	0 0)	0	0	-11.5
		614544.5	4764911.4	304.7	16528.3	0	DEN	250	98.7	0	0	0	95.4	17.2	-0.6	0	0 0)	0	0	-13.3
R11TO08	T08	614544.5	4764911.4	304.7	16528.3	0	DEN	500	100.8	0	0	0	95.4	31.9	-1.6	0	0 0)	0	0	-24.8
		614544.5	4764911.4	304.7	16528.3	0	DEN	1000	98.3	0	0	0	95.4	60.5	-1.6	0	0 0)	0	0	-55.9
		614544.5	4764911.4	304.7	16528.3	0	DEN	2000	92.8	0	0	0	95.4	159.7	-1.6	0	0 0)	0	0	-160.7
		614544.5	4764911.4	304.7	16528.3	0	DEN	4000	85.9	0	0	0	95.4	541.6	-1.6	0	0 0)	0	0	-549.5
		614544.5	4764911.4	304.7	16528.3	0	DEN	8000	73.3	0	0	0	95.4	1931.9	-1.6	0	0 0)	0	0	-1952.3
		625150.0	4765821.0	309.0	16606.1	0	DEN	32	-39.4	0	0	0	95.4	0.5	-5.3	0	0 0)	0	0	-130.0
		625150.0	4765821.0	309.0	16606.1	0	DEN	63	83.6	0	0	0	95.4	2.0	-5.3	0	0 0)	0	0	-8.5
		625150.0	4765821.0	309.0	16606.1	0	DEN	125	91.7	0	0	0	95.4	6.8	1.1	0	0 0)	0	0	-11.6
		625150.0	4765821.0	309.0	16606.1	0	DEN	250	98.7	0	0	0	95.4	17.3	-0.6	0	0 0)	0	0	-13.4
R11TO31	T31	625150.0	4765821.0	309.0	16606.1	0	DEN	500	100.8	0	0	0	95.4	32.0	-1.6	0	0 0)	0	0	-25.0
		625150.0	4765821.0	309.0	16606.1	0	DEN	1000	98.3	0	0	0	95.4	60.7	-1.6	0	0 0)	0	0	-56.3
		625150.0	4765821.0	309.0	16606.1	0	DEN	2000	92.8	0	0	0	95.4	160.5	-1.6	0	0 0)	0	0	-161.5
		625150.0	4765821.0	309.0	16606.1	0	DEN	4000	85.9	0	0	0	95.4	544.2	-1.6	0	0 0)	0	0	-552.1
		625150.0	4765821.0	309.0	16606.1	0	DEN	8000	73.3	0	0	0	95.4	1940.9	-1.6	0	0 0)	0	0	-1961.5
		621655.8	4763002.3	303.7	13290.7	0	DEN	32	-39.4	0	0	0	93.5	0.4	-5.1	0	0 0)	0	0	-128.2
		621655.8	4763002.3	303.7	13290.7	0	DEN	63	83.7	0	0	0	93.5	1.6	-5.1	0	0 0)	0	0	-6.3
		621655.8	4763002.3	303.7	13290.7	0	DEN	125	92.0	0	0	0	93.5	5.5	1.1	0	0 0)	0	0	-8.1
		621655.8	4763002.3	303.7	13290.7	0	DEN	250	96.1	0	0	0	93.5	13.9	-0.6	0	0 0)	0	0	-10.7
R11TO74	T74	621655.8	4763002.3	303.7	13290.7	0	DEN	500	98.4	0	0	0	93.5	25.6	-1.5	0	0 0)	0	0	-19.2
		621655.8	4763002.3	303.7	13290.7	0	DEN	1000	97.0	0	0	0	93.5	48.6	-1.5	0	0 0)	0	0	-43.5
		621655.8	4763002.3	303.7	13290.7	0	DEN	2000	90.2	0	0	0	93.5	128.4	-1.5	0	0 0)	0	0	-130.2
		621655.8	4763002.3	303.7	13290.7	0	DEN	4000	85.2	0	0	0	93.5	435.5	-1.5	0	0 0		0	0	-442.3
		621655.8	4763002.3	303.7	13290.7	0	DEN	8000	81.9	0	0	0	93.5	1553.4	-1.5	0	0 0)	0	0	-1563.5

R11TO36 T36 622378.6 4763063.1 299.0 13402.8 0 DEN 32 -39.4 0 0 0 93.5 0.4 -5.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		-128.2
R11TO36 T36 622378.6 4763063.1 299.0 13402.8 0 DEN 125 92.0 0 0 0 93.5 5.5 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-6.3
R11TO36 T36 622378.6 4763063.1 299.0 13402.8 0 DEN 250 96.1 0 0 0 93.5 14.0 -0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(-8.2
622378.6 4763063.1 299.0 13402.8 0 DEN 1000 97.0 0 0 0 93.5 49.0 -1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	(-10.9
622378.6 4763063.1 299.0 13402.8 0 DEN 1000 97.0 0 0 0 93.5 49.0 -1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	(-19.4
622378.6 4763063.1 299.0 13402.8 0 DEN 4000 85.2 0 0 0 93.5 439.2 -1.5 0 0 0 0 622378.6 4763063.1 299.0 13402.8 0 DEN 8000 81.9 0 0 0 93.5 1566.5 -1.5 0 0 0	0	(-44.0
622378.6 4763063.1 299.0 13402.8 0 DEN 8000 81.9 0 0 0 93.5 1566.5 -1.5 0 0 0	0	(-131.3
	0	(-446.0
	0	(-1576.6
628581.0 4764783.0 304.0 16828.8 0 DEN 32 -39.4 0 0 0 95.5 0.5 -5.3 0 0 0	0	(-130.1
628581.0 4764783.0 304.0 16828.8 0 DEN 63 83.6 0 0 0 95.5 2.0 -5.3 0 0 0	0	(-8.7
628581.0 4764783.0 304.0 16828.8 0 DEN 125 91.7 0 0 0 95.5 6.9 1.1 0 0 0	0	(-11.8
628581.0 4764783.0 304.0 16828.8 0 DEN 250 98.7 0 0 0 95.5 17.6 -0.6 0 0 0	0	(-13.8
R11TO78 T78 628581.0 4764783.0 304.0 16828.8 0 DEN 500 100.8 0 0 0 95.5 32.4 -1.6 0 0 0	0	(-25.6
628581.0 4764783.0 304.0 16828.8 0 DEN 1000 98.3 0 0 0 95.5 61.6 -1.6 0 0 0	0	(57.2
628581.0 4764783.0 304.0 16828.8 0 DEN 2000 92.8 0 0 0 95.5 162.6 -1.6 0 0 0	0	(-163.8
628581.0 4764783.0 304.0 16828.8 0 DEN 4000 85.9 0 0 0 95.5 551.5 -1.6 0 0 0	0		559.5
628581.0 4764783.0 304.0 16828.8 0 DEN 8000 73.3 0 0 0 95.5 1967.0 -1.6 0 0 0	0	_	-1987.6
626968.7 4765950.4 309.0 17265.6 0 DEN 32 -39.4 0 0 0 95.7 0.6 -5.3 0 0 0	0		-130.4
626968.7 4765950.4 309.0 17265.6 0 DEN 63 83.6 0 0 0 95.7 2.1 -5.3 0 0 0	0		-8.9
626968.7 4765950.4 309.0 17265.6 0 DEN 125 91.7 0 0 0 95.7 7.1 1.1 0 0 0	0	_	-12.2
626968.7 4765950.4 309.0 17265.6 0 DEN 250 98.7 0 0 0 95.7 18.0 -0.6 0 0 0	0	_	
R11TO33 T33 626968.7 4765950.4 309.0 17265.6 0 DEN 500 100.8 0 0 0 95.7 33.3 -1.6 0 0 0	0		-26.6
626968.7 4765950.4 309.0 17265.6 0 DEN 1000 98.3 0 0 0 95.7 63.2 -1.6 0 0 0	0		59.0
626968.7 4765950.4 309.0 17265.6 0 DEN 2000 92.8 0 0 0 95.7 166.9 -1.6 0 0 0	0	_	-168.2
626968.7 4765950.4 309.0 17265.6 0 DEN 4000 85.9 0 0 0 95.7 565.8 -1.6 0 0 0	0		574.0
626968.7 4765950.4 309.0 17265.6 0 DEN 8000 73.3 0 0 0 95.7 2018.0 -1.6 0 0 0	0	_	-2038.9
627379.8 4765942.2 309.0 17402.7 0 DEN 32 -39.4 0 0 0 95.8 0.6 -5.3 0 0 0	0		-130.4
627379.8 4765942.2 309.0 17402.7 0 DEN 63 83.6 0 0 0 95.8 2.1 -5.3 0 0 0	0		9.0
627379.8 4765942.2 309.0 17402.7 0 DEN 125 91.7 0 0 0 95.8 7.2 1.1 0 0 0	0		-12.3
R11TOO2 TO2 627379.8 4765942.2 309.0 17402.7 0 DEN 250 98.7 0 0 0 95.8 18.2 -0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0		0 -14.6 0 -27.0
R11TO02 T02 627379.8 4765942.2 309.0 17402.7 0 DEN 500 100.8 0 0 0 95.8 33.6 -1.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	<u> </u>) -27.0) -59.6
62/379.8 4765942.2 309.0 17402.7 0 DEN 2000 92.8 0 0 0 95.8 168.2 -1.6 0 0 0	0	_	0 -169.6
627379.8 4765942.2 309.0 17402.7 0 DEN 4000 85.9 0 0 0 95.8 570.3 -1.6 0 0 0	0		0 -578.6
627379.8 4765942.2 309.0 17402.7 0 DEN 8000 73.3 0 0 0 95.8 2034.1 -1.6 0 0 0	0		0 -2055.0
618324.0 4767127.0 309.0 17617.2 0 DEN 32 -39.4 0 0 95.9 0.6 -5.3 0 0 0	0		0 -130.5
618324.0 4767127.0 309.0 17617.2 0 DEN 63 83.6 0 0 0 95.9 2.1 -5.3 0 0 0	0	_	9.1
618324.0 4767127.0 309.0 17617.2 0 DEN 125 91.7 0 0 0 95.9 7.2 1.1 0 0 0	0	_	0 -12.5
618324.0 4767127.0 309.0 17617.2 0 DEN 250 98.7 0 0 0 95.9 18.4 -0.6 0 0 0	0		0 -15.0
R11TO93 T93 618324.0 4767127.0 309.0 17617.2 0 DEN 500 100.8 0 0 0 95.9 34.0 -1.6 0 0 0	0		0 -27.5
618324.0 4767127.0 309.0 17617.2 0 DEN 1000 98.3 0 0 0 95.9 64.4 -1.6 0 0 0	0	_	0 -60.5
618324.0 4767127.0 309.0 17617.2 0 DEN 2000 92.8 0 0 0 95.9 170.3 -1.6 0 0 0	0		0 -171.8
618324.0 4767127.0 309.0 17617.2 0 DEN 4000 85.9 0 0 0 95.9 577.3 -1.6 0 0 0	0	-	5 -585.7
618324.0 4767127.0 309.0 17617.2 0 DEN 8000 73.3 0 0 0 95.9 2059.1 -1.6 0 0 0	0		0 -2080.2

		623095.6	4767244.5	310.0	17636.8	0	DEN	32	-39.4	0	0	0	95.9	0.6	-5.3	0	0 0)	0	0	-130.5
		623095.6	4767244.5	310.0	17636.8	0	DEN	63	83.6	0	0	0	95.9	2.1	-5.3	0	0 0	_	0	0	-9.1
		623095.6	4767244.5	310.0	17636.8	0	DEN	125	91.7	0	0	0	95.9	7.2	1.1	0	0 0)	0	0	-12.6
		623095.6	4767244.5	310.0	17636.8	0	DEN	250	98.7	0	0	0	95.9	18.4	-0.6	0	0 0)	0	0	-15.0
R11TO06	T06	623095.6	4767244.5	310.0	17636.8	0	DEN	500	100.8	0	0	0	95.9	34.0	-1.6	0	0 0)	0	0	-27.5
		623095.6	4767244.5	310.0	17636.8	0	DEN	1000	98.3	0	0	0	95.9	64.5	-1.6	0	0 0		0	0	-60.5
		623095.6	4767244.5	310.0	17636.8	0	DEN	2000	92.8	0	0	0	95.9		-1.6	0	0 0)	0	0	-172.0
		623095.6	4767244.5	310.0	17636.8	0	DEN	4000	85.9	0	0	0	95.9	578.0	-1.6	0	0 0)	0	0	-586.4
		623095.6	4767244.5	310.0	17636.8	0	DEN	8000	73.3	0	0	0	95.9	2061.4	-1.6	0	0 0)	0	0	-2082.4
		616342.8	4766967.0	309.0	17877.9	0	DEN	32	-39.4	0	0	0	96.0	0.6	-5.4	0	0 0)	0	0	-130.7
		616342.8	4766967.0	309.0	17877.9	0	DEN	63	83.6	0	0	0	96.0	2.2	-5.4	0	0 0)	0	0	-9.3
		616342.8	4766967.0	309.0	17877.9	0	DEN	125	91.7	0	0	0	96.0	7.3	1.1	0	0 0)	0	0	-12.8
		616342.8	4766967.0	309.0	17877.9	0	DEN	250	98.7	0	0	0	96.0	18.7	-0.6	0	0 0)	0	0	-15.4
R11TO81a	T81	616342.8	4766967.0	309.0	17877.9	0	DEN	500	100.8	0	0	0	96.0	34.5	-1.6	0	0 0)	0	0	-28.1
		616342.8	4766967.0	309.0	17877.9	0	DEN	1000	98.3	0	0	0	96.0	65.4	-1.6	0	0 0)	0	0	-61.5
		616342.8	4766967.0	309.0	17877.9	0	DEN	2000	92.8	0	0	0	96.0	172.8	-1.6	0	0 0)	0	0	-174.4
		616342.8	4766967.0	309.0	17877.9	0	DEN	4000	85.9	0	0	0	96.0	585.9	-1.6	0	0 0)	0	0	-594.4
		616342.8	4766967.0	309.0	17877.9	0	DEN	8000	73.3	0	0	0	96.0	2089.6	-1.6	0	0 0)	0	0	-2110.7
		614214.8	4766530.6	309.7	18149.3	0	DEN	32	-39.4	0	0	0	96.2	0.6	-5.4	0	0 0)	0	0	-130.8
		614214.8	4766530.6	309.7	18149.3	0	DEN	63	83.6	0	0	0	96.2	2.2	-5.4	0	0 0)	0	0	-9.4
		614214.8	4766530.6	309.7	18149.3	0	DEN	125	91.7	0	0	0	96.2	7.5	1.1	0	0 0)	0	0	-13.0
		614214.8	4766530.6	309.7	18149.3	0	DEN	250	98.7	0	0	0	96.2	18.9	-0.6	0	0 0)	0	0	-15.8
R11TO52	T52	614214.8	4766530.6	309.7	18149.3	0	DEN	500	100.8	0	0	0	96.2	35.0	-1.6	0	0 0)	0	0	-28.8
		614214.8	4766530.6	309.7	18149.3	0	DEN	1000	98.3	0	0	0	96.2	66.4	-1.6	0	0 0)	0	0	-62.7
		614214.8	4766530.6	309.7	18149.3	0	DEN	2000	92.8	0	0	0	96.2	175.4	-1.6	0	0 0)	0	0	-177.2
		614214.8	4766530.6	309.7	18149.3	0	DEN	4000	85.9	0	0	0	96.2	594.8	-1.6	0	0 0)	0	0	-603.4
		614214.8	4766530.6	309.7	18149.3	0	DEN	8000	73.3	0	0	0	96.2	2121.3	-1.6	0	0 0)	0	0	-2142.6
		623610.3	4764393.4	304.0	14887.6	0	DEN	32	-39.4	0	0	0	94.5	0.5	-5.2	0	0 0)	0	0	-129.1
		623610.3	4764393.4	304.0	14887.6	0	DEN	63	83.7	0	0	0	94.5	1.8	-5.2	0	0 0)	0	0	-7.3
		623610.3	4764393.4	304.0	14887.6	0	DEN	125	92.0	0	0	0	94.5	6.1	1.1	0	0 0)	0	0	-9.7
		623610.3	4764393.4	304.0	14887.6	0	DEN	250	96.1	0	0	0	94.5	15.5	-0.6	0	0 0)	0	0	-13.3
R11TO55	T55	623610.3	4764393.4	304.0	14887.6	0	DEN	500	98.4	0	0	0	94.5	28.7	-1.6	0	0 0)	0	0	-23.2
		623610.3	4764393.4	304.0	14887.6	0	DEN	1000	97.0	0	0	0	94.5	54.5	-1.6	0	0 0		0	0	-50.3
		623610.3	4764393.4	304.0	14887.6	0	DEN	2000	90.2	0	0	0	94.5	143.9	-1.6	0	0 0		0	0	-146.6
		623610.3	4764393.4	304.0	14887.6	0	DEN	4000	85.2	0	0	0	94.5	487.9	-1.6	0	0 0		0	0	-495.6
		623610.3	4764393.4	304.0	14887.6	0	DEN	8000	81.9	0	0	0	94.5	1740.1	-1.6	0	0 0)	0	0	-1751.1
		619127.0	4768529.0	314.0	18904.2	0	DEN	32	-39.4	0	0	0	96.5	0.6	-5.4	0	-	_	0	0	-131.1
		619127.0	4768529.0	314.0	18904.2	0	DEN	63	83.6	0	0	0	96.5	2.3	-5.4	0	0 0)	0	0	-9.8
		619127.0	4768529.0	314.0	18904.2	0	DEN	125	91.7	0	0	0	96.5	7.8	1.1	0	0 0	4	0	0	-13.7
		619127.0	4768529.0	314.0	18904.2	0	DEN	250	98.7	0	0	0	96.5	19.7	-0.6	0	0 0	+	0	0	-16.9
R11TO66	T66	619127.0	4768529.0	314.0	18904.2	0	DEN	500	100.8	0	0	0	96.5	36.4	-1.6	0	0 0		0	0	-30.6
		619127.0	4768529.0	314.0	18904.2	0	DEN	1000	98.3	0	0	0	96.5	69.1	-1.6	0	0 0		0	0	-65.8
		619127.0	4768529.0	314.0	18904.2	0	DEN	2000	92.8	0	0	0	96.5	182.7	-1.6	0	0 0		0	0	-184.8
		619127.0	4768529.0	314.0	18904.2	0	DEN	4000	85.9	0	0	0	96.5	619.5	-1.6	0	0 0		0	0	-628.5
		619127.0	4768529.0	314.0	18904.2	0	DEN	8000	73.3	0	0	0	96.5	2209.6	-1.6	0	0 0)	0	0	-2231.2


		622534.5	4768708.0	314.0	19039.9	0	DEN	32	-39.4	0	0	0	96.6	0.6	-5.4	0	0 0)	0	0	-131.2
		622534.5	4768708.0	314.0	19039.9	0	DEN	63	83.6	0	0	0	96.6	2.3	-5.4	0	0 0	-	0	0	-9.9
		622534.5	4768708.0	314.0	19039.9	0	DEN	125	91.7	0	0	0	96.6	7.8	1.1	0	0 0)	0	0	-13.8
		622534.5	4768708.0	314.0	19039.9	0	DEN	250	98.7	0	0	0	96.6	19.9	-0.6	0	0 0)	0	0	-17.1
R11TO27	T27	622534.5	4768708.0	314.0	19039.9	0	DEN	500	100.8	0	0	0	96.6	36.7	-1.6	0	0 0)	0	0	-30.9
		622534.5	4768708.0	314.0	19039.9	0	DEN	1000	98.3	0	0	0	96.6	69.6	-1.6	0	0 0)	0	0	-66.3
		622534.5	4768708.0	314.0	19039.9	0	DEN	2000	92.8	0	0	0	96.6	184.0	-1.6	0	0 0)	0	0	-186.2
		622534.5	4768708.0	314.0	19039.9	0	DEN	4000	85.9	0	0	0	96.6	623.9	-1.6	0	0 0)	0	0	-633.0
		622534.5	4768708.0	314.0	19039.9	0	DEN	8000	73.3	0	0	0	96.6	2225.4	-1.6	0	0 0)	0	0	-2247.1
		627524.4	4767739.7	309.0	19137.2	0	DEN	32	-39.4	0	0	0	96.6	0.6	-5.4	0	0 0)	0	0	-131.3
		627524.4	4767739.7	309.0	19137.2	0	DEN	63	83.6	0	0	0	96.6	2.3	-5.4	0	0 0)	0	0	-10.0
		627524.4	4767739.7	309.0	19137.2	0	DEN	125	91.7	0	0	0	96.6	7.9	1.1	0	0 0)	0	0	-13.9
		627524.4	4767739.7	309.0	19137.2	0	DEN	250	98.7	0	0	0	96.6	20.0	-0.6	0	0 0)	0	0	-17.3
R11TO04	T04	627524.4	4767739.7	309.0	19137.2	0	DEN	500	100.8	0	0	0	96.6	36.9	-1.6	0	0 0)	0	0	-31.1
		627524.4	4767739.7	309.0	19137.2	0	DEN	1000	98.3	0	0	0	96.6	70.0	-1.6	0	0 0)	0	0	-66.7
		627524.4	4767739.7	309.0	19137.2	0	DEN	2000	92.8	0	0	0	96.6	184.9	-1.6	0	0 0)	0	0	-187.2
		627524.4	4767739.7	309.0	19137.2	0	DEN	4000	85.9	0	0	0	96.6	627.1	-1.6	0	0 0)	0	0	-636.2
		627524.4	4767739.7	309.0	19137.2	0	DEN	8000	73.3	0	0	0	96.6	2236.8	-1.6	0	0 0)	0	0	-2258.5
		618752.1	4768764.2	314.0	19179.8	0	DEN	32	-39.4	0	0	0	96.7	0.6	-5.4	0	0 0)	0	0	-131.3
		618752.1	4768764.2	314.0	19179.8	0	DEN	63	83.6	0	0	0	96.7	2.3	-5.4	0	0 0)	0	0	-10.0
		618752.1	4768764.2	314.0	19179.8	0	DEN	125	91.7	0	0	0	96.7	7.9	1.1	0	0 0)	0	0	-13.9
		618752.1	4768764.2	314.0	19179.8	0	DEN	250	98.7	0	0	0	96.7	20.0	-0.6	0	0 0)	0	0	-17.3
R11TO94	T94	618752.1	4768764.2	314.0	19179.8	0	DEN	500	100.8	0	0	0	96.7	37.0	-1.6	0	0 0)	0	0	-31.2
		618752.1	4768764.2	314.0	19179.8	0	DEN	1000	98.3	0	0	0	96.7	70.2	-1.6	0	0 0		0	0	-66.9
		618752.1	4768764.2	314.0	19179.8	0	DEN	2000	92.8	0	0	0	96.7	185.4	-1.6	0	0 0)	0	0	-187.6
		618752.1	4768764.2	314.0	19179.8	0	DEN	4000	85.9	0	0	0	96.7	628.5	-1.6	0	0 0		0	0	-637.7
		618752.1	4768764.2	314.0	19179.8	0	DEN	8000	73.3	0	0	0	96.7	2241.8	-1.6	0	0 0)	0	0	-2263.5
		624435.2	4768696.0	309.0	19267.9	0	DEN	32	-39.4	0	0	0	96.7	0.6	-5.4	0	0 0)	0	0	-131.3
		624435.2	4768696.0	309.0	19267.9	0	DEN	63	83.6	0	0	0	96.7	2.3	-5.4	0	0 0)	0	0	-10.0
		624435.2	4768696.0	309.0	19267.9	0	DEN	125	91.7	0	0	0	96.7	7.9	1.1	0	0 0)	0	0	-14.0
		624435.2	4768696.0	309.0	19267.9	0	DEN	250	98.7	0	0	0	96.7	20.1	-0.6	0	0 0	_	0	0	-17.5
R11TO57	T57	624435.2	4768696.0	309.0	19267.9	0	DEN	500	100.8	0	0	0	96.7	37.1	-1.6	0	0 0	_	0	0	-31.4
		624435.2	4768696.0	309.0	19267.9	0	DEN	_	98.3	0	0	0	96.7	70.5	-1.6	0	0 0	_	0	0	-67.3
		624435.2	4768696.0	309.0	19267.9	0	DEN		92.8	0	0	0	96.7	186.2	-1.6	0	0 0		0	0	-188.5
		624435.2	4768696.0	309.0	19267.9	0	DEN	4000	85.9	0	0	0	96.7	631.4	-1.6	0	0 0		0	0	-640.6
		624435.2	4768696.0	309.0	19267.9	0	DEN	8000	73.3	0	0	0	96.7	2252.1	-1.6	0	0 0		0	0	-2273.8
		628473.0	4767629.0	309.0	19375.5	0	DEN	32	-39.4	0	0	0	96.7	0.6	-5.4	0	-	-	0	0	-131.4
		628473.0	4767629.0	309.0	19375.5	0	DEN	63	83.6	0	0	0	96.7	2.4	-5.4	0	0 0		0	0	-10.1
		628473.0	4767629.0	309.0	19375.5	0	DEN	125	91.7	0	0	0	96.7	8.0	1.1	0	0 0		0	0	-14.1
		628473.0	4767629.0	309.0	19375.5	0	DEN	250	98.7	0	0	0	96.7	20.2	-0.6	0	0 0		0	0	-17.6
R11TO58	T58	628473.0	4767629.0	309.0	19375.5	0	DEN	500	100.8	0	0	0	96.7	37.4	-1.6	0	0 0	_	0	0	-31.7
		628473.0	4767629.0	309.0	19375.5	0	DEN		98.3	0	0	0	96.7	70.9	-1.6	0	0 0		0	0	-67.7
		628473.0	4767629.0	309.0	19375.5	0	DEN	2000	92.8	0	0	0	96.7	187.2	-1.6	0	0 0		0	0	-189.6
		628473.0	4767629.0	309.0	19375.5	0	DEN	4000	85.9	0	0	0	96.7	634.9	-1.6	0	0 0		0	0	-644.2
		628473.0	4767629.0	309.0	19375.5	0	DEN	8000	73.3	0	0	0	96.7	2264.6	-1.6	0	0 0	1	0	0	-2286.5


		622516.5	4769095.7	309.0	19425.1	0	DEN	32	-39.4	0	0	0	96.8	0.6	-5.4	0	0 0)	0	0	-131.4
		622516.5	4769095.7	309.0	19425.1	0	DEN	63	83.6	0	0	0	96.8	2.4	-5.4	0	0 0	-	0	0	-10.1
		622516.5	4769095.7	309.0	19425.1	0	DEN	125	91.7	0	0	0	96.8	8.0	1.1	0	0 0)	0	0	-14.1
		622516.5	4769095.7	309.0	19425.1	0	DEN	250	98.7	0	0	0	96.8	20.3	-0.6	0	0 0)	0	0	-17.7
R11TO28	T28	622516.5	4769095.7	309.0	19425.1	0	DEN	500	100.8	0	0	0	96.8	37.4	-1.6	0	0 0)	0	0	-31.8
		622516.5	4769095.7	309.0	19425.1	0	DEN	1000	98.3	0	0	0	96.8	71.1	-1.6	0	0 0)	0	0	-67.9
		622516.5	4769095.7	309.0	19425.1	0	DEN	2000	92.8	0	0	0	96.8	187.7	-1.6	0	0 0)	0	0	-190.1
		622516.5	4769095.7	309.0	19425.1	0	DEN	4000	85.9	0	0	0	96.8	636.6	-1.6	0	0 0)	0	0	-645.8
		622516.5	4769095.7	309.0	19425.1	0	DEN	8000	73.3	0	0	0	96.8	2270.4	-1.6	0	0 0)	0	0	-2292.3
		619135.8	4769107.8	314.0	19479.1	0	DEN	32	-39.4	0	0	0	96.8	0.6	-5.4	0	0 0)	0	0	-131.4
		619135.8	4769107.8	314.0	19479.1	0	DEN	63	83.6	0	0	0	96.8	2.4	-5.4	0	0 0)	0	0	-10.2
		619135.8	4769107.8	314.0	19479.1	0	DEN	125	91.7	0	0	0	96.8	8.0	1.1	0	0 0)	0	0	-14.2
		619135.8	4769107.8	314.0	19479.1	0	DEN	250	98.7	0	0	0	96.8	20.3	-0.6	0	0 0)	0	0	-17.8
R11TO85	T85	619135.8	4769107.8	314.0	19479.1	0	DEN	500	100.8	0	0	0	96.8	37.6	-1.6	0	0 0)	0	0	-31.9
		619135.8	4769107.8	314.0	19479.1	0	DEN	1000	98.3	0	0	0	96.8	71.2	-1.6	0	0 0)	0	0	-68.1
		619135.8	4769107.8	314.0	19479.1	0	DEN	2000	92.8	0	0	0	96.8	188.2	-1.6	0	0 0)	0	0	-190.6
		619135.8	4769107.8	314.0	19479.1	0	DEN	4000	85.9	0	0	0	96.8	638.3	-1.6	0	0 0)	0	0	-647.6
		619135.8	4769107.8	314.0	19479.1	0	DEN	8000	73.3	0	0	0	96.8	2276.8	-1.6	0	0 0)	0	0	-2298.6
		626599.0	4768825.0	309.0	19885.2	0	DEN	32	-39.4	0	0	0	97.0	0.6	-5.4	0	0 0)	0	0	-131.6
		626599.0	4768825.0	309.0	19885.2	0	DEN	63	83.6	0	0	0	97.0	2.4	-5.4	0	0 0)	0	0	-10.4
		626599.0	4768825.0	309.0	19885.2	0	DEN	125	91.7	0	0	0	97.0	8.2	1.1	0	0 0)	0	0	-14.5
		626599.0	4768825.0	309.0	19885.2	0	DEN	250	98.7	0	0	0	97.0	20.7	-0.7	0	0 0)	0	0	-18.4
R11TO56	T56	626599.0	4768825.0	309.0	19885.2	0	DEN	500	100.8	0	0	0	97.0	38.3	-1.6	0	0 0)	0	0	-32.9
		626599.0	4768825.0	309.0	19885.2	0	DEN	1000	98.3	0	0	0	97.0	72.7	-1.6	0	0 0)	0	0	-69.8
		626599.0	4768825.0	309.0	19885.2	0	DEN	2000	92.8	0	0	0	97.0	192.2	-1.6	0	0 0)	0	0	-194.7
		626599.0	4768825.0	309.0	19885.2	0	DEN	4000	85.9	0	0	0	97.0	651.6	-1.6	0	0 0)	0	0	-661.1
		626599.0	4768825.0	309.0	19885.2	0	DEN	8000	73.3	0	0	0	97.0	2324.2	-1.6	0	0 0)	0	0	-2346.3
		614455.8	4766402.4	309.0	17940.5	0	DEN	32	-39.4	0	0	0	96.1	0.6	-5.4	0	0 0)	0	0	-130.7
		614455.8	4766402.4	309.0	17940.5	0	DEN	63	83.7	0	0	0	96.1	2.2	-5.4	0	0 0)	0	0	-9.2
		614455.8	4766402.4	309.0	17940.5	0	DEN	125	92.0	0	0	0	96.1	7.4	1.1	0	0 0)	0	0	-12.5
		614455.8	4766402.4	309.0	17940.5	0	DEN	250	96.1	0	0	0	96.1	18.7	-0.6	0	0 0)	0	0	-18.1
R11TO53	T53	614455.8	4766402.4	309.0	17940.5	0	DEN	500	98.4	0	0	0	96.1	34.6	-1.6	0	0 0)	0	0	-30.7
		614455.8	4766402.4	309.0	17940.5	0	DEN	1000	97.0	0	0	0	96.1	65.6	-1.6	0	0 0	_	0	0	-63.1
		614455.8	4766402.4	309.0	17940.5	0	DEN	2000	90.2	0	0	0	96.1	173.4	-1.6	0	0 0		0	0	-177.6
		614455.8	4766402.4	309.0	17940.5	0	DEN	4000	85.2	0	0	0	96.1	587.9	-1.6	0	0 0		0	0	-597.2
		614455.8	4766402.4	309.0	17940.5	0	DEN	8000	81.9	0	0	0	96.1	2096.9	-1.6	0	0 0		0	0	-2109.5
		630122.5	4766228.8	309.0	18825.1	0	DEN	32	-39.4	0	0	0	96.5	0.6	-5.4	0	-	-	0	0	-131.1
		630122.5	4766228.8	309.0	18825.1	0	DEN	63	83.7	0	0	0	96.5	2.3	-5.4	0	0 0)	0	0	-9.7
		630122.5	4766228.8	309.0	18825.1	0	DEN	125	92.0	0	0	0	96.5	7.7	1.1	0	0 0		0	0	-13.3
		630122.5	4766228.8	309.0	18825.1	0	DEN	250	96.1	0	0	0	96.5	19.6	-0.6	0	0 0	_	0	0	-19.4
R11TO18	T18	630122.5	4766228.8	309.0	18825.1	0	DEN	500	98.4	0	0	0	96.5	36.3	-1.6	0	0 0	_	0	0	-32.8
		630122.5	4766228.8	309.0	18825.1	0	DEN	1000	97.0	0	0	0	96.5	68.9	-1.6	0	0 0		0	0	-66.7
		630122.5	4766228.8	309.0	18825.1	0	DEN	2000	90.2	0	0	0	96.5	181.9	-1.6	0	0 0		0	0	-186.6
		630122.5	4766228.8	309.0	18825.1	0	DEN	4000	85.2	0	0	0	96.5	616.9	-1.6	0	0 0		0	0	-626.6
		630122.5	4766228.8	309.0	18825.1	0	DEN	8000	81.9	0	0	0	96.5	2200.3	-1.6	0	0 0)	0	0	-2213.3

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT – REA AMENDMENT

Appendix F Additional Information February 05, 2016

TRANSFORMER BARRIER COORDINATES

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix F Additional Information February 05, 2016

1. Substation ST1 (100/133/166 ONAN/ONAF/ONAF MVA Transformer noise source modeled at a height of 3.7m with UTM Coordinates 621960, 4761728) will require a four sided barrier of 5 metres in height above grade. Barrier corner coordinates are:

Four sided barrier's 4 corner points are provided below

4 corners	Easting [m]	Northing [m]
Corner 1	621957	4761731
Corner 2	621957	4761723
Corner 3	621964	4761723
Corner 4	621964	4761732

2. Substation ST2 (100/133/166 ONAN/ONAF/ONAF MVA Transformer noise source modeled at a height of 3.7m with UTM Coordinates 622837, 4754679) will require a two sided barrier of 5 metres in height above grade. This barrier should be placed on south and west side of the transformer and extended at least 2 meters beyond the transformer such that noise flanking is negligible. Barrier corner coordinates are:

Two sided barrier's 3 corner points are provided below

3 corners	Easting [m]	Northing [m]
Corner 1	622832	4754687
Corner 2	622832	4754670
Corner 3	622842	4754671

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Appendix G Response to Ministry of the Environment Technical Review Comments

- G1 Verification of Specific Noise Receptors
- G2 Supplemental Information to Address MOE Comments
- G3 Sound Power Level Rationale
- G4 Supplemental MOECC Receptor Verification Comments
- G5 REA Amendment (October, 2015) Info. Request #1, #2 and #3

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Appendix G1 – Verification of Specific Noise Receptors

During the Ministry of the Environment (MOE) Technical Review process and through correspondence received through the 60-day Environmental Bill of Rights (EBR) comment period for this Project, specific noise receptors were identified as requiring additional rationale to justify their location and / or classification in the noise model. These specific receptors were identified, reviewed and discussed with the MOE.

As appropriate, additional information was provided to the MOE to rationalize each of the noise receptors. Where amendments were required, the noise model and associated mapping was updated accordingly. The responses provided below summarize the result of discussions with the MOE.0

The following information provides a summary of the issues raised regarding specific noise receptors identified for this Project and the rationale and resulting actions taken to either support or amend the Noise Assessment Report (NAR). Copies of applicable correspondence with the MOE and others in regards to these items are attached:

Info Request 3: Eric Gillespie Letters

Concern:

Correspondence received from Mr. Eric Gillespie dated January 28, 2014 (see attached) indicated that at least 2 dwellings have been omitted from the maps in the NAR.

Response:

Stikeman Elliot, on behalf of NRWC, responded on January 31, 2014 (see attached) requesting further information about the location of potential noise receptors suggested to be missing from the Noise Assessment Report. A response was received from Mr. Gillespie dated February 11, 2014 (see attached) stating that at least two houses were omitted from the maps within the northeast portion of the Study Area, although the location of these dwellings was not provided citing a "lack of necessary equipment" and rationale for it being "impossible ... to pinpoint the exact coordinates of these dwellings".

Further attempts to contact Mr. Gillespie via email (February 12th and February 27th, 2014) (see attached) by Stikeman Elliot, as well as verbal discussions and phone messages, have not been successful and no further information has been provided as to the location of these omitted dwellings.

In the absence of further information, several supplemental reviews of the existing information were completed by Stantec to confirm the presence of any additional noise receptors within the Study Area.

Areas within the 40 dBA noise contour and the 550 m setback, which were determined to be the most sensitive area, were targeted for more detailed review. Aerial photographs, GIS parcels comparisons and information provided by the area municipalities with respect to new building permits or Planning Act approvals prior to the issuance of the draft site plan in August 2012 were reviewed. The results of this review identified no additional noise receptors within the 40 dBA contour or within 550m of a proposed turbine.

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Further, 2 receptors were identified within 1.5 km of the proposed turbines that were not previously identified, including receptor O_4001 (described below under Info Request 6) and receptor V_4000, which is located on a vacant property along the west side of Caistor Gainsborough Rd. in the Township of West Lincoln.

The predicted noise level at receptor V_4000 is 36.5 dBA and the nearest turbine (T08) is located 928 m from this receptor. As discussed below, O_4001 is located 780 m from the closest turbine (T27) and the noise level at this receptor is 38.7 dBA. Both of these receptors are below the 40.0 dBA threshold and more than 550 m from the nearest turbine, and meet the requirements in accordance with O. Reg. 359/09.

Action:

Two new receptors have been added to the noise model and summarized in the NAR. There are no impacts on the location of the proposed turbines as a result of these new receptors as they comply with the setbacks and noise thresholds established in O. Reg. 359/09.

Info Request 4: Receptor 1750

Concern:

Concerns were raised by the landowner that the existing residence on the property was not identified as such in the NAR. The landowner noted that a dwelling exists on the property, which is part of an operational farm, and that the turbine is located closer to the dwelling than what is identified in the NAR.

Response:

Through site investigations, this property was initially identified as a commercial operation and it was determined to be unclear whether the structure in question was used as a residence or as part of the commercial operation. While commercial operations are exempt from assessment, this structure was conservatively identified as a point of reception (POR) and classified as V_1750 (i.e. "vacant or future, if not currently" considered a receptor) and included in the noise model.

Despite the conflict in naming convention, the POR representing this structure was placed at the exact location of this dwelling. The predicted noise level at this receptor is 39.7 dBA and the nearest turbine (T06) is located at 697 m from the receptor. As such, the minimum REA setback of 550m has been accommodated for this structure and the noise model demonstrates that the sound level was predicted to be less than 40.0 dBA.

See correspondence dated February 12, 2014 (attached).

Action:

Based on the supplemental information provided by the landowner, this receptor label has been amended from V_1750 to O_1750 to recognize the existing residential use on the property. There are no impacts to the Project since this receptor complies with the minimum setback and noise threshold requirements under O. Reg. 359/09.

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Info Request 5: Receptor 3582 and 3583

Concern:

Concerns were raised by the landowner with respect to the placement of the receptors on the subject property. The landowner claimed that the existing barn, while not currently a dwelling, could be converted to a residential use and therefore should be recognized as a noise receptor. The landowner also claimed that they intend to build a new house on the subject property at a location different than where receptor V_3583 is located.

Response:

The subject property consists of two distinct parcels, one of which consists of an agricultural field and the other as a former rail line. Receptor V_3583 is located on the former rail line parcel, while V_3582 is identified on the property to the east where the existing barn is located. Both receptors are identified as vacant lot receptors as there are no dwellings constructed, or approved for construction, on the subject property.

The existing barn structure does not meet the definition of a noise receptor under O. Reg. 359/09, based on the size, shape and orientation of the structure and surrounding gravel parking area, construction equipment and outside storage containers. Further, the landowner and Township of West Lincoln have acknowledged that the structure is not currently used as a dwelling. In order to be converted to permit a residential use, the structure would have to be changed to comply with the Building Code and approved through the issuance of a building permit, which has not been completed to date (or prior to the issuance of the draft site plan).

The vacant lot receptor (V_3582) located on this parcel was located between the barn and the road, consistent with the pattern of the area (i.e. houses are typically located between the road and the barn, not behind) and in line with the existing dwelling to the east, in accordance with the MOE Noise Guidelines. It is also located in proximity to a second access to the property. While the landowner may claim to have future plans for a house elsewhere on the property, there is no rationale for this alternate location over others nor an approved building permit or planning approvals for this work (as confirmed by the landowner).

In the absence of a building permit confirming the location of an approved dwelling prior to issuance of the draft site plan, the location of Receptor 3582 reflects a location where a building would "reasonably" be expected to be located, having regard to the existing zoning by-laws and the typical building pattern of lots in the area, in accordance with the requirements of O. Reg. 359/09 and MOE Noise Guidelines.

Further, the location of Turbine T93 complies with all applicable property line and waterbody setback distances defined under O. Reg. 359/09, as illustrated in the supporting REA technical reports under separate cover. See correspondence dated February 12, 2014 (attached). See correspondence dated February 13, 2014, April 17, 2014, April 23, 2014 and May 9, 2014 (attached).

Action:

No amendments to the NAR or no revision of model are required. Confirmation of the information summarized above and included in the attached correspondence has been requested through a *Freedom of Information Act* request to the Township of West Lincoln. This

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT – REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

request is being process at the time of the preparation of this report, and once available, this will be provided to the MOE.

Info Request 6: Receptors 735, 794, 1762, 582, 674 and 148

V_735 - Regional Road 65, West Lincoln

Concern:

Concern was raised that this lot was incorrectly identified as a vacant property.

Response:

During the site investigations, this property was identified as a potential commercial property and it was determined to be unclear whether the structure in question was used as a residence or as part of the commercial operation. While commercial operations are exempt from assessment, this structure was conservatively identified as a point of reception (POR) and classified as V_735 (i.e. "vacant or future, if not currently" considered a receptor) and included in the noise model.

Despite the conflict in naming convention, the POR representing this structure was placed at the exact location of this dwelling. The predicted noise level at this receptor is 36.9 dBA and the nearest turbine (T54) is located at 920 m from the receptor. As such, the minimum REA setback of 550m has been accommodated for this structure and the noise model demonstrates that the sound level was predicted to be less than 40.0 dBA. See correspondence dated March 6, 2014 (attached).

Action:

Based on the supplemental information provided by the landowner, this receptor label has been amended from V_735 to O_735 to recognize the existing residential use on the property. There are no impacts to the Project since this receptor complies with the minimum setback and noise threshold requirements under O. Reg. 359/09.

V 794 – Regional Road 65, West Lincoln

Concern:

Concern was raised that this lot was incorrectly identified as a vacant property.

Response:

Based on our review of the current aerial photography, field verification during the initial development of the noise model to identify POR's, and review of building permits prior to issuance of the draft site plan, this property is a correctly identified as a vacant property. There is no existing dwelling on this property and no dwelling was approved prior to the issuance of the draft site plan. Receptor V_794 was appropriately located on the subject property within the noise model. See correspondence dated March 6, 2014 (attached).

Action:

No change to the noise model is required.

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT – REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

V 1762 - Concession Road 4, West Lincoln

Concern:

Concern was raised that this lot was incorrectly identified as a vacant property.

Response:

The subject property is located at the intersection of 2 unopened road allowances - Concession 4 (running east-west along the south side of the property) and Dengo Road (running north-south along 2 the east side of the property. The property is also entirely comprised of significant woodland and wetland with no open areas. There is no existing dwelling on the subject property. However, a vacant lot receptor was conservatively identified in the noise model for the subject property.

It is possible that questions arising regarding the location of V_1762 may be in regards to its location relative to a potential dwelling located on the property to the north. While this adjacent property is represented in the noise model by receptor O_1758, a second structure is visible at the south of the property closer to V_1762.

Through air photo interpretation, this second structure could be a dwelling; however verification of this structure was not possible through the physical verification process due to property access and isolation of the property. It appears to be accessible only from a private road that extends from Dengo Rd. at the north of the property and is not visible from a municipal right of way.

While not identified in the noise model, this structure was recognized during the development of the project layout and the appropriate receptor setback and noise threshold were maintained. This structure is located 780 m from the closest turbine (T27) and the noise level at this receptor is 38.7 dBA, which is below the 40.0 dBA threshold. See correspondence dated March 6, 2014 (attached).

Action:

No change is required to the location of V_1762. However, in recognition of the information provided through the EBR and upon further review of the aerial photography, an additional receptor (O_4001) has been added to the noise model to reflect the location of the apparent dwelling and the NAR has been updated accordingly.

O_148 - Concession 4 Road, West Lincoln

Concern:

Concerns were raised as to the proximity of this receptor to the closest proposed turbine, which was suggested to be Turbine T08.

Response:

This receptor is correctly positioned on an existing dwelling that fronts onto Concession 4. Turbine T81 is correctly identified as the closest turbine to receptor O_148 at a distance of approximately 1,180 m. Turbine T08 is not even the second closest turbine to this receptor, as Turbines T52 and T53 are closer. Turbine T08 is located approximately 2,806 m from receptor O_148. See correspondence dated March 6, 2014 (attached).

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Action:

No change is required to the NAR tables.

O_582 and O_674 - Elcho Road, West Lincoln

Concern:

Concerns were raised as to the proximity of this receptor to the closest proposed turbine, which was suggested to be Turbine T08.

Response:

The location of receptor O_582 and O_674 are correctly positioned on exiting dwellings fronting onto Elcho Rd. The closest turbine to these receptors is confirmed to be Turbine T07, which is located 612 m and 558 m away, respectively. See correspondence dated March 6, 2014 (attached).

Action:

No changes are required to the NAR tables.

Info Request 7: Alleged Receptor between Receptors 1481 and 1598

Concern:

Concern was raised that an occupied home between receptors 1481 and 1598 is that is not shown on the maps or included in the NAR reports as a receptor.

Response:

Upon further reviewing the aerial photographs, property mapping and site photographs of the various structures along this stretch of Regional Rd. 20, all parcels between Receptors 1481 and 1598 are represented by a noise receptor and there are no "occupied homes" that have been missed in the noise model.

See correspondence dated March 13, 2014 (attached).

Action:

No changes to the noise model or NAR are required.

ERIC K. GILLESPIE PROFESSIONAL CORPORATION BARRISTERS & SOLICITORS

Eric K. Gillesple, LLB. Direct Tel: 416.703.6362 Email: ecillespie@qillesplelaw.ca

FACSIMILE TRANSMISSION

то	FIRM	FACSIMILE NO.
President	Niagara Region Wind Corporation	416-314-8452

From:

ERIC K. GILLESPIE

Firm:

ERIC K, GILLESPIE PROFESSIONAL CORPORATION

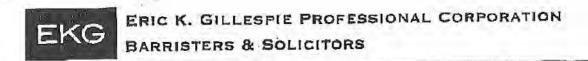
Date:

Our File No.:

January 28, 2014

Re:

Niagara Region Wind Farm - Unidentified Noise Receptors


00717

PAGES (including cover sheet): 2
If you do not receive all pages, please phone Sarah Quildon at (416) 703-5400

MESSAGE:

Our letter dated January 28, 2014

This material is intended for use only by the individual or entity to whom it is addressed and should not be read by, or delivered to, any other person. This material may contain privileged or confidential information, the disclosure or other use of which by other than the intended recipient may result in the breach of certain laws or the infringement of rights of third parties, if you have received this facsimile in error, please telephone us immediately (collect if necessary) so that we can make arrangements for the return of this facsimile and any confirmation copy which you may receive by mail, at our expense,

Eric K. Gillespie, LL.B. Direct Tel: 416,703,6362 Email: eclilespie@gillespielaw.cs

January 28, 2014

By Post

President
Niagara Region Wind Corporation
277 Lakeshore Road East, Suite 211
Oakville, Ontario
L6J 6J3

Dear Sir or Madam:

Re: Niagara Region Wind Farm - Unidentified Noise Receptors
Our File No. 00717

We have been retained by Individuals concerned with the improper identification of noise receptors in the Niagara Region Wind Farm (the "Project") as required under the Guidelines for Renewable Energy Approval Applications and under Ontario Regulation 359/09. Specifically the maps made publically available for the Project do not include at least two noise receptors that were in existence long prior to the publication of the Notice of Draft Site Plan and as such as considered dwellings for the purposes of the Renewable Energy Approval Application. As a result it is impossible to properly calculate the required noise levels and setback distances for these dwellings and for the Project as a whole.

We look forward to your prompt response to these concerns.

Yours truly,

ERIC K. GILLESPIE
PROFESSIONAL CORPORATION

E CA

Eric K. Gillesple EKG/ga

cc Sarah Raetsen, Senior Program Support Coordinator, Ministry of the Environment, Fax: 416-314-8452

10 King Street East, Sulte 600, Toronto, Ontario MSC 1C3, Canada TEL: 416.703 3400 | FAX: 416.703.9111

STIKEMAN ELLIOTT

Stikeman Elliott LLP Barristers & Solicitors

5300 Commerce Court West, 199 Bay Street, Toronto, Canada M5L 1B9 Tel: (416) 869-5500 Fax: (416) 947-0866 www.stikeman.com

Direct: (416) 869-5257 Fax: (416) 947-0866

E-mail: pduffy@stikeman.com

BY E-MAIL January 31, 2014 (egillespie@gillespielaw.ca) File No.: 130367-1001

Mr. Eric Gillespie Eric K. Gillespie Professional Corporation Barristers and Solicitors 10 King Street East, Suite 600 Toronto, ON M5C 1C3

Dear Sirs/Mesdames:

Re: Niagara Region Wind Farm - Unidentified Noise Receptors

We are the solicitors for Niagara Region Wind Corporation ("NRWC") and write with respect to your letter of January 28, 2014. Your letter provides insufficient information for NRWC to address the concerns your clients have raised. Please provide us with further information about the potential noise receptors that you believe qualify as dwellings for the purposes of Regulation 359/09. At a minimum, we require municipal addresses for each of the potential receptors. Any additional information you could provide about the potential receptors (i.e. a description of the dwelling, photographs, etc.) would also be helpful.

We ask that you provide the requested information as soon as possible so that NRWC can respond to these concerns in a timely manner.

Yours truly,

DD-1/1

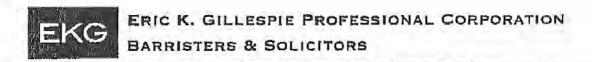
TORONTO

MONTREAL

Patrick Duffy OTTAWA

CALGARY

c.c.: Jim Harbell, Stikeman Elliott LLP


Sarah Raetsen, Ministry of Environment, (via fax (416) 314-8452)

VANCOUVER
NEW YORK

LONDON

SYDNEY

PD/il

Eric K. Gillospie, LL.B. Direct Tel: 416.703.6362 Email: egil esple@qillospielaw.ca

February 11, 2014

By Facsimile

Sarah Raetsen
Senior Program Support Coordinator
Environmental Approvals Branch, Ministry of the Environment
2 St. Clair Avenue West, Floor 12 A
Toronto, Ontario M4V 1L5
Fax: (416) 314-8452

Dear Ms. Raetsen:

Re: Niagara Region Wind Farm – Unidentified Noise Receptors
Our File No. 00717

Thank you for your letter of January 29, 2014. Our clients are aware of at least two houses located within the block bounded by Regional Road 69 to the north, Regional Road 24/Victoria Avenue to the east, and Regional Road 20 to the west and south in the West Lincoln area that have been omitted from the maps made publicly available and, presumably, submitted to the Ministry as part of Niagara Region Wind Corporation's Renewable Energy Approval application package. These dwellings were in existence for a number of years prior to the beginning of this project and, as a result, there does not appear to be any reason why they should have been omitted from the maps. Not having the necessary equipment, it is impossible for our clients to pinpoint the exact coordinates of these dwellings. However, we look forward to hearing from you regarding Niagara Region Wind Corporation's response to these omissions and the results of their review of the project's receptor location maps.

Yours truly,

ERIC K. GILLESPIE
PROFESSIONAL CORPORATION

Eric K. Gillespie

EKG/ga

Powell, Chris

From: Patrick Duffy <PDuffy@stikeman.com>
Sent: Thursday, February 27, 2014 12:39 PM

To: 'eqillespie@gillespielaw.ca'

Cc: Jim Harbell

Subject: RE: NRWC re Unidentified Noise Receptors

Attachments: NRWC - Letter to Gilespie re Unidentified Noise Receptors (Dated Jan 31,....pdf

Eric – Further to my emails below, please get back to us as soon as possible with details of the potential noise receptors referenced in your letter of January 28.

Patrick Duffy
Tel: (416) 869-5257
pduffy@stikeman.com

From: Patrick Duffy

Sent: Wednesday, February 12, 2014 12:38 PM

To: 'egillespie@gillespielaw.ca'

Cc: Jim Harbell

Subject: RE: NRWC re Unidentified Noise Receptors

Eric - I appreciate you have a few other things going on this week, but can you get back to us on the attached letter as soon as possible. If there is someone else in our office we should be dealing with on this matter, just let me know. Thanks.

Patrick Duffy

Tel: (416) 869-5257 pduffy@stikeman.com

From: Ivy C Lee **On Behalf Of** Patrick Duffy **Sent:** Friday, January 31, 2014 2:57 PM

To: 'egillespie@gillespielaw.ca' **Cc:** Jim Harbell; Patrick Duffy

Subject: NRWC re Unidentified Noise Receptors

Dear Mr. Gillespie,

Please see attached.

Regards, lvy

Ivy Lee

Legal Administrative Assistant to Patrick Duffy

Tel: (416) 869-5569 ilee@stikeman.com

Powell, Chris

From: Powell, Chris

Sent: Thursday, March 06, 2014 1:45 PM

To: Miller, Denton (ENE)

Cc: Raetsen, Sarah (ENE); Darren Croghan; Leggett, Al; Patrick Duffy
Subject: RE: NWCF Info Request - 3b MOE ref file # 1175-972NB9

Denton,

To my knowledge, there has been no response to the letter sent to Mr. Gellespie's office regarding this issue dated January 31, 2014. However, I will follow-up with NRWC to confirm if any further contact has been made with / received from Mr. Gillespie's office and will advise you as soon as possible with an update.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Associate, Environmental Services Stantec Consulting Ltd.

Office: (519) 585-7416 Cell: (519) 501-2368 chris.powell@stantec.com

From: Miller, Denton (ENE) [Denton.Miller@ontario.ca]

Sent: March 6, 2014 12:58 PM

To: Powell, Chris

Cc: Raetsen, Sarah (ENE)

Subject: RE: NWCF Info Request - 3b MOE ref file # 1175-972NB9

Hello Chris

Did you receive a response from Eric Gillespie re our Jan 30, 2014 e-mail info request 3 to your office?

Attached is a letter that EAB received from Eric Gillespie addressing the same issue.

Regards Denton Miller 416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: January 31, 2014 3:39 PM

To: Raetsen, Sarah (ENE); Miller, Denton (ENE)

Cc: Leggett, Al; 'mervcroghan@nrwc.ca'; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'pduffy@stikeman.com';

'JHarbell@stikeman.com'

Subject: Fw: Niagara Region Wind Farm Information request - 3 MOE ref file # 1175-972NB9

Sarah / Denton,

In regards to the letter from Mr. Gillespie, NRWC has followed up with his firm to seek clarification on the location of the referenced noise receptors (see attached).

We will keep you informed of any response and once confirmed, will advise of the outcome.

Chris

Chris Powell, M.A. Project Manager Environmental Planner Stantec Cell: (519) 501-2368

Sent from my Blackberry

From: Patrick Duffy [mailto:PDuffy@stikeman.com]

Sent: Friday, January 31, 2014 02:56 PM

To: 'egillespie@gillespielaw.ca' < eqillespie@gillespielaw.ca>

Cc: Jim Harbell < <u>JHarbell@stikeman.com</u>>; Patrick Duffy < <u>PDuffy@stikeman.com</u>>

Subject: NRWC re Unidentified Noise Receptors

Dear Mr. Gillespie,

Please see attached.

Regards, lvy

Ivy Lee

Legal Administrative Assistant to Patrick Duffy Tel: (416) 869-5569 ilee@stikeman.com

STIKEMAN ELLIOTT LLP Barristers & Solicitors 5300 Commerce Court West, 199 Bay Street, Toronto, ON, Canada M5L 1B9

www.stikeman.com

TORONTO MONTREAL OTTAWA CALGARY VANCOUVER NEW YORK LONDON SYDNEY

This e-mail is confidential and may contain privileged information. If you are not an intended recipient, please delete this e-mail and notify us immediately. Any unauthorized use or disclosure is prohibited.

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT – REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Appendix G2 – Supplemental Information to Address MOE Comments

During the Ministry of the Environment (MOE) Technical Review process and through correspondence received through the 60-day Environmental Bill of Rights (EBR) comment period for this Project, additional information was requested by the MOE to complete their technical review of the NAR.

The following information provides a summary of the additional information requested by the MOE for this Project and the corresponding response from the project team. Copies of applicable correspondence with the MOE and others in regards to these items are attached:

Munich Higher Regional Court's Decision

Concern:

MOE requested comments from Enercon on the following court decision identified via an EBR comment:

The Munich Higher Regional Court's decision pertinent to impulsive sound from Enercon E-82 wind turbines in a wind farm located in Rennertshofen in the district of Neuburg-Schrobenhausen. Judgment OLG München 14.08.2012

Response:

The following comments were provided by Enercon, the manufacturer of the E-82 turbine, in response to MOE's request for information on this issue:

The article referenced is in regard to a claim and subsequent ruling which has been made against Enercon regarding the impulsivity of E-82 turbines in one of its wind parks near Munich, Germany. Enercon is in full disagreement with the ruling and are launching a full appeal against the region.

In response, as per the official comments from Enercon GmbH made on this issue: "for us, this ruling is completely incomprehensible", says Felix Rehwald, Spokesperson for Europe's largest wind turbine manufacturer Enercon.

He continues to comment that Enercon manufactures, sells and guarantees its turbines worldwide against tonality (in accordance with the IEC standards) and furthermore that Enercon's own specialists in sound power have yet to yield any measurements which would indicate impulsivity of the turbines and as such, Enercon is launching counterproceedings in the way of an appeal against the ruling.

The court case in Germany is not related to the NRWC project from a technical and environmental permitting perspective. See correspondence dated April 16, 2014 (attached).

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Action:

The noise model has been completed in accordance with the sound power level information provided by Enercon, as supported by Kotter. No adjustments are required.

Rosa Flora Turbine

Concern:

The source data for the Rosa Flora turbine described in the NAR and as identified in the supporting Cadna files provided to the MOE reference different sound power levels for this existing turbine.

Response:

The Rosa Flora turbine is a 0.65 MW (650 kW) turbine located approximately 3,500 m from the nearest NRWC turbine. The maximum sound power level for this turbine as used in the noise model is 103.5 dBA, as noted in Section 3.3 (page 3.9). This is further confirmed in the sample calculation and Cadna/A input/outputs table provided in Appendix E of the NAR and in the adjusted emission level for the Rosa Flora turbine identified in Table F1 of Appendix F of the NAR. This value was rounded to 104 dBA in Table 3.8 of the NAR.

Further, the version of the Cadna file that was provided to the MOE as part of the technical review process consisted a lower number. The correct version of this file representing the 103.5 dBA sound pressure level, as used in the noise model for this Project, was provided to the MOE. See correspondence dated April 16, 2014 (attached).

Action:

To avoid confusion, Table 3.8 has been amended to illustrate a maximum sound power level of 103.5 dBA, as used in the noise model for this individual turbine. No changes to the tables in Appendix C, E or F of the NAR are required.

Powell, Chris

From: Miller, Denton (ENE) < Denton.Miller@ontario.ca>

Sent: Thursday, February 13, 2014 10:40 AM

To: Powell, Chris

Cc: Raetsen, Sarah (ENE)

Subject: RE: NRWF Information request - 4 MOE ref file # 1175-972NB9

Hello Chris

We are satisfied with your explanation.

NRWC will be required to update the current noise study (or submit an amendment) addressing the noted oversights in the September 2013 noise study.

Regards

DM

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: February 10, 2014 2:57 PM

To: Miller, Denton (ENE)

Cc: Raetsen, Sarah (ENE); Ganesh, Kana; Leggett, Al; Darren Croghan; Merv Croghan; Shiloh Berriman

(sberriman@nrwc.ca)

Subject: RE: NRWF Information request - 4 MOE ref file # 1175-972NB9

Denton,

We have looked into this request and offer the following rationale for the identification of this receptor as identified in the Noise Assessment Report:

During the initial development of the noise model, and identification of receptors (POR's), our field crews reviewed each of the potential POR's to confirm and verify the appropriate classification of these structures. Based on their site investigations, our field crew identified this particular property as "potentially commercial" due to several exhaust fans and dust collector style structures within the property. The following are two photographs of the subject property, with Receptor 1750 visible in both photos (behind trees in photo 1, more visible in photo 2):

Photo 1:

Photo 2:

The guidelines for wind farms suggest the following:

For the purpose of approval of new sources, including verifying compliance with section 9 of the Environmental Protection Act, the Point of Reception may be located on any of the following existing or zoned for future use premises: permanent or seasonal residences, hotels/motels, nursing/retirement homes, rental residences,

hospitals, camp grounds, and noise sensitive buildings such as schools and places of worship. A point of receptor is defined as a sensitive land use.

Typically, commercial properties are exempted from assessment, however, it was not possible to verify whether this structure was in fact commercial or supporting a residential use. Therefore, we conservatively identified this structure as a receptor (1750). Our initial thought was to identify this structure as "Other", but later decided to have a "V_" suffix applied to this structure to mean "vacant or future, if not currently" considered a receptor.

Despite the conflict in naming convention, the POR representing this structure was placed at the exact location as the current location of this house. The predicted noise level at this POR is 39.7 dBA and the nearest turbine (T06) is located at 697 m from the receptor. As such, the minimum REA setback of 550m has been accommodated for this structure and the model demonstrates that the sound level was predicted to be less than 40.0 dBA

We trust that this clarifies the question from the public and for your consideration during the technical review process.

If you have any further questions, please do not hesitate to ask.

Sincerely,

Chris

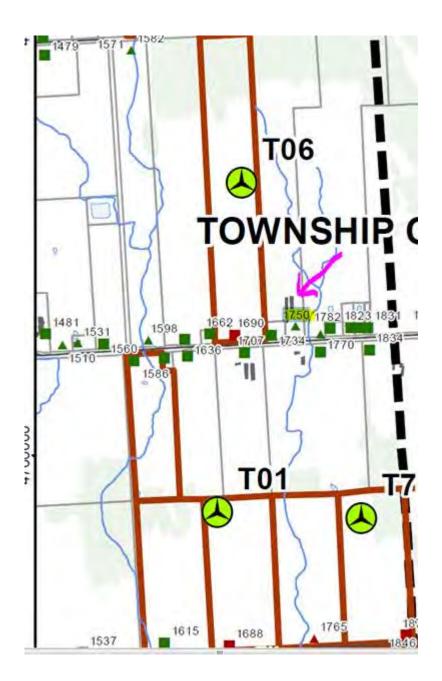
From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Monday, February 03, 2014 11:02 AM

To: Powell, Chris

Cc: Raetsen, Sarah (ENE)

Subject: RE: NRWF Information request - 4 MOE ref file # 1175-972NB9


Hi Chris

We have been approached by the owner of the lot that contains V_1750 (re: your Sept 30, 2013 noise report). He has made the following assertion:

I am the OPERATIONAL FARM that has been in business since 1958 and I am marked as VACANT and the turbine is much closer than what NRWC has submitted.

The following is additional information about $V_{-}1750$ as noted in the Sept 30, 2013 noise report.

Receiver ID	Night	Height	Coordinates		
			X	Υ	Z
	(dBA)	(m)	(m)	(m)	(m)
V_1750	39.7	4.5	623,336.69	4,766,590.11	189.5

Please provide rationale why this receptor was deemed to be a vacant lot.

Regards Denton Miller 416-314-8310

From: Powell, Chris

Sent: Thursday, February 13, 2014 2:16 PM

To: 'Miller, Denton (ENE)'

Cc: Raetsen, Sarah (ENE); Leggett, Al; Darren Croghan

Subject: RE: NRWC info request -5 Letter dated Jan 22, 2014 Receptor 3583 **Attachments:** Attachment 1 - Subject Properties.jpg; Attachment 2 - Aerial of Barn Building.jpg;

Attachment 3 - BarnBldgNearT93.jpg

Denton,

The property on which receptor V_3583 is located is a former rail line, which extends from Concession 4 to Silver Street. This property is a separate parcel from the one immediately to the east where the barn is located (see Attachment 1). These properties may be under common ownership, however remain as two distinct parcels. As such, we have identified two distinct receptors on these parcels (V_3583 and V_3582), both fronting onto Concession 4. V_3583 is located on the former rail line parcel, while V_3582 is identified on the property to the east where the barn is located.

For the purpose of approval of new sources, including verifying compliance with section 9 of the Environmental Protection Act, the Point of Reception may be located on any of the following existing or zoned for future use premises:

- permanent or seasonal residences;
- hotels/motels;
- nursing/retirement homes;
- rental residences;
- hospitals;
- camp grounds; and
- noise sensitive buildings such as schools and places of worship.

The existing barn does not satisfy any of these criteria.

This barn was reviewed by our field staff when verifying the presence and location of Points of Reception for this project. During their surveys, the following observations were made specific to the barn:

- 1. The size of the building is larger than a 'typical house' (see Attachment 2 aerial imagery);
- 2. The shape of the building resembles that of a barn and not of a dwelling (see Attachment 3 building photograph);
- 3. The orientation of the building was perpendicular to Concession 4, while houses typically (but not always) face the road; and
- 4. The building is also surrounded on all sides by gravel, construction equipment and outside storage containers, which are atypical of a residential use (see Attachment 3 building photograph).

Based on these observations, we concluded this building could be a barn or a similar structure and does not meet the criteria for a residential dwelling.

Correspondence received from this landowner between September 2012 and February 2013, after issuance of the draft site plan, confirmed that there was no dwelling on the property but they intended to build a dwelling on the property in the future. As part of our due diligence in preparing the draft site plan, we consulted in advance with the Township to confirm whether any building permits had been issued for this property, and others in the Project study area. It was confirmed that no building permit was issued by the Township of West Lincoln for a residence or residential use on the subject property prior to the issuance of the draft site plan in August 2012.

The future potential conversion of a barn is not considered as a residential use or structure, and this barn structure did not contain an existing residential use at the time the draft site plan was issued. As noted by this landowner in the information attached to your email, "there is no dwelling on the property", and while the Township has informed this landowner that the upper floor could be converted to a residential use, it would require "changes ... to comply with the building code".

Vacant Lots are defined as receptors that have been zoned by the local municipality to permit residential or similar noise-sensitive uses. The receptor location, if unknown at the time of the proposal (i.e. no building permit issued for construction), shall be based on a 1 hectare (10,000 m²) building envelope within the vacant lot property that would reasonably be expected to contain the use, and that conforms with the municipal zoning by-laws in effect. The specific receptor location for assessment purposes should be assumed to be 4.5 m above grade and:

- 1. consistent with the typical building pattern in the area, or
- 2. at the centre of the 1 hectare building envelope.

Since there is a barn on the property (and no existing receiver), vacant lot receptor V_3582 is located between the barn and the road consistent with the pattern of the area, and in line with the existing dwelling to the east. It is not typical to have receivers behind a barn in the entire study area.

Therefore, while this landowner may not agree with the location of the vacant lot receptor on the subject property, it has been identified and appropriately located in accordance with the requirements of O. Reg. 359/09.

We trust that this supports the Noise Assessment Report and clarifies any questions you may have in this regard. If you have any further questions, please do not hesitate to ask.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Stantec 49 Frederick Street Kitchener ON N2H 6M7 Phone: (519) 585-7416 Cell: (519) 501-2368

Fax: (519) 579-6733 Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, February 13, 2014 8:28 AM

To: Powell, Chris

Cc: Raetsen, Sarah (ENE); Leggett, Al; Darren Croghan

Subject: RE: NRWC info request -5 Letter dated Jan 22, 2014 Receptor 3583

Hello Chris

Further to my previous E-mail (info request -5) of Wednesday, February 12, 2014 1:57 PM, please also consider the following set back distance issues noted in the following excerpt from an e-mail I received yesterday from the owner of the lot identified with the vacant lot receptor ID 3583.

Thank You

Regards Denton Miller 416-314-8310

From: XXXXX

Sent: February 12, 2014 8:28 PM

To: Miller, Denton (ENE)

Subject: Re: FW: Re: Letter dated Jan 22, 2014 XXXXXXX

Hello Mr. Miller

My property is the one with the number 3583 under the green triangle, immediately west of the property where T 93 is proposed. The western property line (the gray diagonal line) is a former railroad right-of-way. Our property is 32.61 acres, zoned A 2 agricultural, with provision for one private residence. I do not know what the green triangle on the right-of-way represents. Does it refer to our barn? The barn is 66 meters (216 feet) from the front property line and 23 meters (75 feet) from the west side property line.

XXXXXXX

The green square 542, is a privately owned natural gas pumping station that is not currently pumping. XXXXXXXXX

T93 is less than 70 meters from the property line and approximately 440 meters (1445 feet) from the site of our proposed house. The future house location was set in 2005 and all the infrastructure on the property was built to suit our choice of house site. There is a raised filter bed for the septic system for the barn which is fully plumbed and drained. The building has natural gas which supplies the boiler for the in-floor radiant heating and the furnace to heat the upper floor.

Due to the septic bed location and the gas line location, it is impossible to build a house where NRWC says we should build it. There is a driveway, installed in 2005, that is 50 feet from the property line. Do I build the house on the driveway? How do I get to the barn? As you can see, not one clear thinking person has even physically looked at our property.

Putting a rural home 15 meters from a gravel road is absurd for a family that is trying to escape the noise and congestion of Mississauga. Not one home built in the last few years in West Lincoln on a property one acre or more, has been built 15 m (50 ft) from the road.

Between the two driveways, there are berms installed that slope away from the roadway to allow for drainage for the fruit and nut trees we intend to plant there. The slope drains into a swale that empties into the watercourse that runs along the eastern side of the property.

If you view aerial photos of the property, you can clearly see how we have prepared the property to accommodate a house that will be at least 320 feet from the road.

I have provided all this information to show that the building of the house was to be the culmination of a well thought out plan that predates the Green Energy Act., the Niagara Region Wind Corporation and this industrial Wind Turbine Proposal.

Our plan allowed for a sustainable and enhanced use of this property to keep employing the land for agricultural purposes while also having an energy efficient residence.

If there are any further questions or if you need more information, do not hesitate to contact me.

With Thanks

XXXXXXXX

Regards Denton Miller 416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: February 12, 2014 2:51 PM

To: Miller, Denton (ENE)

Cc: Raetsen, Sarah (ENE); Leggett, Al; Darren Croghan

Subject: RE: NRWC info request -5 Letter dated Jan 22, 2014 Receptor 3583

Denton,

We are familiar with these two properties and consulted with this landowner during the REA process. We will prepare a response to this comment and send it to you shortly.

Chris

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Wednesday, February 12, 2014 1:57 PM

To: Powell, Chris

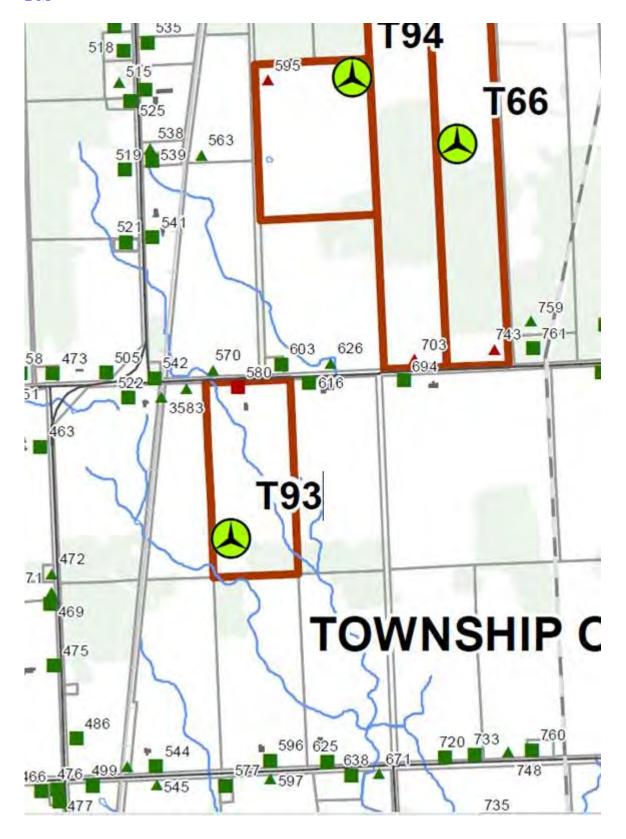
Cc: Raetsen, Sarah (ENE)

Subject: NRWC info request -5 Letter dated Jan 22, 2014 Receptor 3583

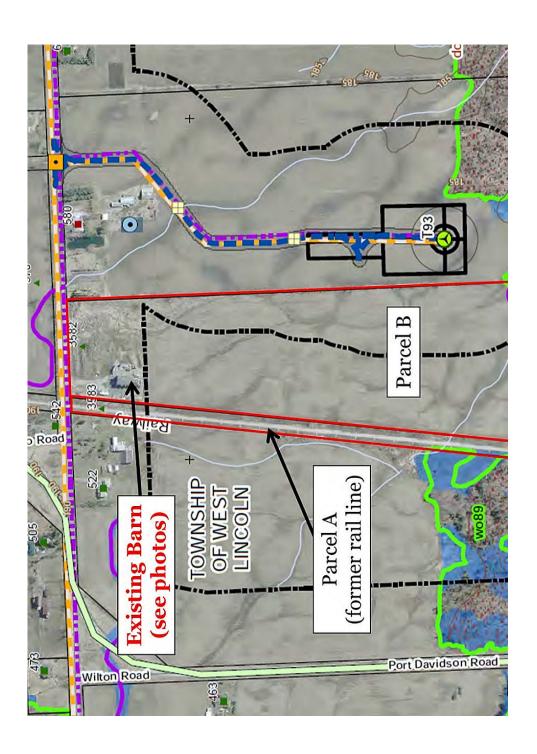
Hello Chris

We have been approached by the owner of the lot that contains vacant lot receptor 3583 (re: your Sept 30, 2013 noise report; see diagram below). He has made the following assertion:

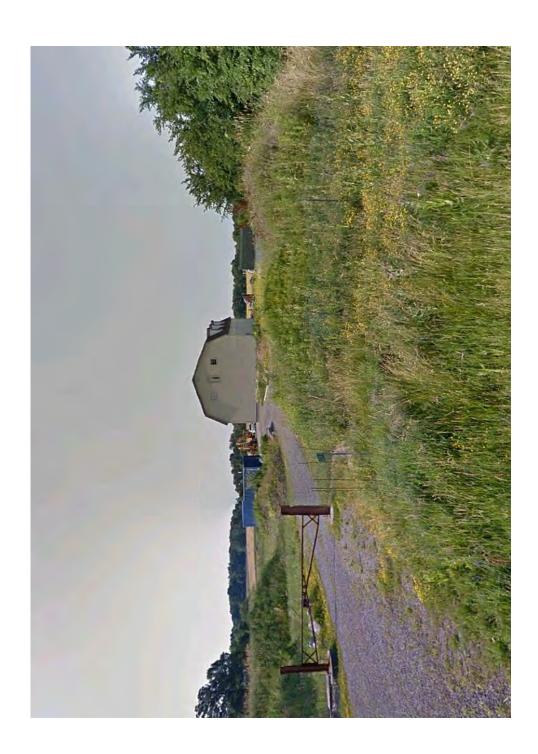
There is currently no dwelling on the property, although there is a new barn. The Township of West Lincoln now says can have the upper floor used as a dwelling, provided that changes are made to comply with the building code. The center of the existing building, erected in 2007 is 513 meters from the proposed turbine {T 93}. This building was built by us long before there was an NRWC.


All of the infrastructure on this property was placed there by us after taking possession on January 15, 2004.

Please refer to the attached document for a detailed description of all the noise issues identified by the owner of the lot and provide EAB with a response.


Your response should also address the definition of dwelling as defined Ontario Regulation 359/09 and how it applies to the existing barn on the subject property.

Thank You


DM

Denton Miller | Senior Review Engineer | Team 5 | Environmental Approvals Branch I Ministry of the Environment 2 St. Clair Ave W. 12a Floor Toronto, Ontario, M4V 1L5 | Phone: 416-314-8310 | <u>Denton.Miller@ontario.ca</u>|

From: Powell, Chris

Sent: Thursday, April 17, 2014 4:43 PM

To: Denton.Miller@ontario.ca; Raetsen, Sarah (ENE)

Cc: Darren Croghan; Merv Croghan; Shiloh Berriman (sberriman@nrwc.ca); Leggett, Al

(Al.Leggett@stantec.com); Ganesh, Kana

Subject: FW: Building Permit in West Lincoln - (RE: NRWC info request -5 Letter dated

Jan 22, 2014 Receptor 3583)

Attachments: let_FOI_for_6374_Conc_4_West_Lincoln_2014_03_20.pdf; 2 - Twp - FOI Update_

04apr14.pdf; 3 - Janzen Google Streetview - June 2012.pdf; 4 - MOE - 5a - Receptor

3583_12feb14.pdf

Importance: High

Denton / Barbara,

Further to our call on April 9, 2014, the purpose of this email is to follow up on the status of our Freedom of Information Act (FOI) and to provide additional information with respect to the setbacks and receptor location identified for the subject property. Previous responses to this string of emails were provided to the MOE on February 13, March 20 and March 27, 2014 and should be read in conjunction with the following information.

Freedom of Information Act Request

A copy of the Freedom of Information Act (FOI) request sent to the Township on March 25, 2014 is attached. Also attached is the response we received from the Township of West Lincoln with respect to our FOI request for the building permit for 6374 Concession Road 4, West Lincoln (i.e. property west of T93). This response indicates that they may not be able to respond to our request within the timeframe allotted by the MOE, and beyond that will be subject to potential further delays awaiting confirmation from the landowner who will be provided the opportunity to object to the release of the requested information in accordance with the Freedom of Information Act. To date, we have not received the requested information from the Township in this regard.

As soon as a copy of the building permit information is available, we will forward it to your attention. However, based on the FOI process currently underway with the Township, it may not be possible to provide the MOE with a copy of the building permit by the requested deadline of April 17, 2014.

Existing Barn Structure

Stantec, on behalf of NRWC, has undertaken to clarify that the existing structure on the subject property is not a dwelling, and was not a dwelling at the time of crystallization (August 2012). We have incorporated observations of current site conditions into the identification of noise receptors, have corresponded with the landowner during the REA consultation process, and have discussed this specific property with Township staff. We have also provided supporting information to the MOE during the review for completeness and further during the technical review process, all of which suggests that the existing structure is not a dwelling, including comments received from the landowner (per your email dated February 12, 2014) confirming that "there is currently no dwelling on the property, although there is a new barn" (see attached).

While we currently do not have a copy of the building permit issued for the construction of the barn, we have requested this information from the Township and will continue to follow up with them to obtain this information. We have discussed this issue on several occasions with Brian Treble from the Township of West Lincoln who has verbally confirmed that the existing structure is not permitted for a residential use and would be subject to further building permits and approvals in order to convert this structure to permit a residential use.

No evidence has been presented by the landowner confirming that the existing barn structure is in fact a dwelling, and by identifying a desire to construct a dwelling elsewhere on the property suggests his intent is not to use the existing structure as a dwelling. While their long term plans may be to establish a residential structure on the subject property, either utilizing the existing structure or constructing a new dwelling on the property, or permitting use of the existing structure as a dwelling. This will be confirmed through the Township of West Lincoln FOI request.

Location of Receptor 3583

For the purposes of defining the location of a noise receptor on vacant land, the applicant must specify the position on the lot where a building would reasonably be expected to be located, having regard to the existing zoning by-laws and the typical building pattern of lots in the area (MOE, 2012). Rationale for the location of Receptor 3583 was discussed in our email dated February 13, 2014.

Further to that email, questions have been raised as to the existence of a second driveway entrance to the property and its influence on determining the location of a vacant lot receptor on the subject property. We acknowledge that a secondary entrance to the property existed at the time the draft site plan was issued, as illustrated in the attached photograph (dated June 2012), however there is no evidence that a gravel driveway existed prior to the issuance of the draft site plan for this Project (August 2012). The location of Receptor 3583 is in proximity to this secondary entrance, which could accommodate a proposed future dwelling subject to the issuance of Building Permit.

While there is evidence of grading on the subject property, as visible in the available aerial photography, there is no obvious building location evident based on the information available. While the landowner may have future plans for a house on the property to be located 320 feet (97.5m) from the front of the property, there is no rationale for this location over others nor approved building permits (as confirmed by the landowner) that would support this location.

Furthermore, we suggest that the existence of Turbine T93 would not preclude the landowner from building a house at this location at some point in the future. While minimum setbacks apply for turbines being proposed in proximity to existing and/or approved dwellings, similar setbacks do not apply for proposed dwellings in proximity to existing and/or approved turbine locations. As such, the location of T93 would not preclude construction of a house on the subject property.

The test of an applicant for determining what is "reasonable" in terms of the location of a vacant lot receptor is not based on the future plans of a landowner but rather documentation approved by a municipality to justify the proposed location, such as an approved Building Permit, Site Plan or Planning Act approval. Taking into account all existing property entrances, driveways or farm access lanes when siting vacant lot receptors would be unreasonable.

In the absence of a building permit confirming the location of an approved dwelling prior to issuance of the draft site plan, the location of Receptor 3583 reflects a location where a building would reasonably be expected to be located, having regard to the existing zoning by-laws and the typical building pattern of lots in the area.

Summary

We trust that this update will address your concerns in regards to Receptor 3583 pending resolution of the FOI request currently in front of the Township of West Lincoln.

Please do not hesitate to give me a call on my cell phone if you have any questions or would like to discuss this further.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner

Stantec

49 Frederick Street Kitchener ON N2H 6M7

Phone: (519) 585-7416 Cell: (519) 501-2368 Fax: (519) 579-6733 Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, April 03, 2014 3:12 PM To: Slattery, Barbara (ENE); Kossowski, Julia Cc: Powell, Chris; Raetsen, Sarah (ENE) Subject: RE: Building Permit in West Lincoln,

Hi Julia

Could you please provide this information by April 17, 2014.

Thank you

Regards **Denton Miller** 416-314-8310

From: Slattery, Barbara (ENE) Sent: April 3, 2014 3:04 PM

To: Kossowski, Julia (Julia.Kossowski@stantec.com) Cc: Chris.Powell@stantec.com; Miller, Denton (ENE)

Subject: Building Permit in West Lincoln,

Importance: High

Julia, I was wondering whether you have obtained a copy of the building and septic system permits for the property in question in West Lincoln to enable the completion of our review of the circumstances for Receptor 3583?

March 24, 2014 File: 160950269

Attention: Ms. Carolyn Langley, ClerkTownship of West Lincoln, Clerk's Department
318 Canborough St, PO Box 400
Smithville, ON
LOR 2A0

Dear Ms. Langley,

Reference: Freedom of Information Request -Approvals re: 6374 Concession Road 4

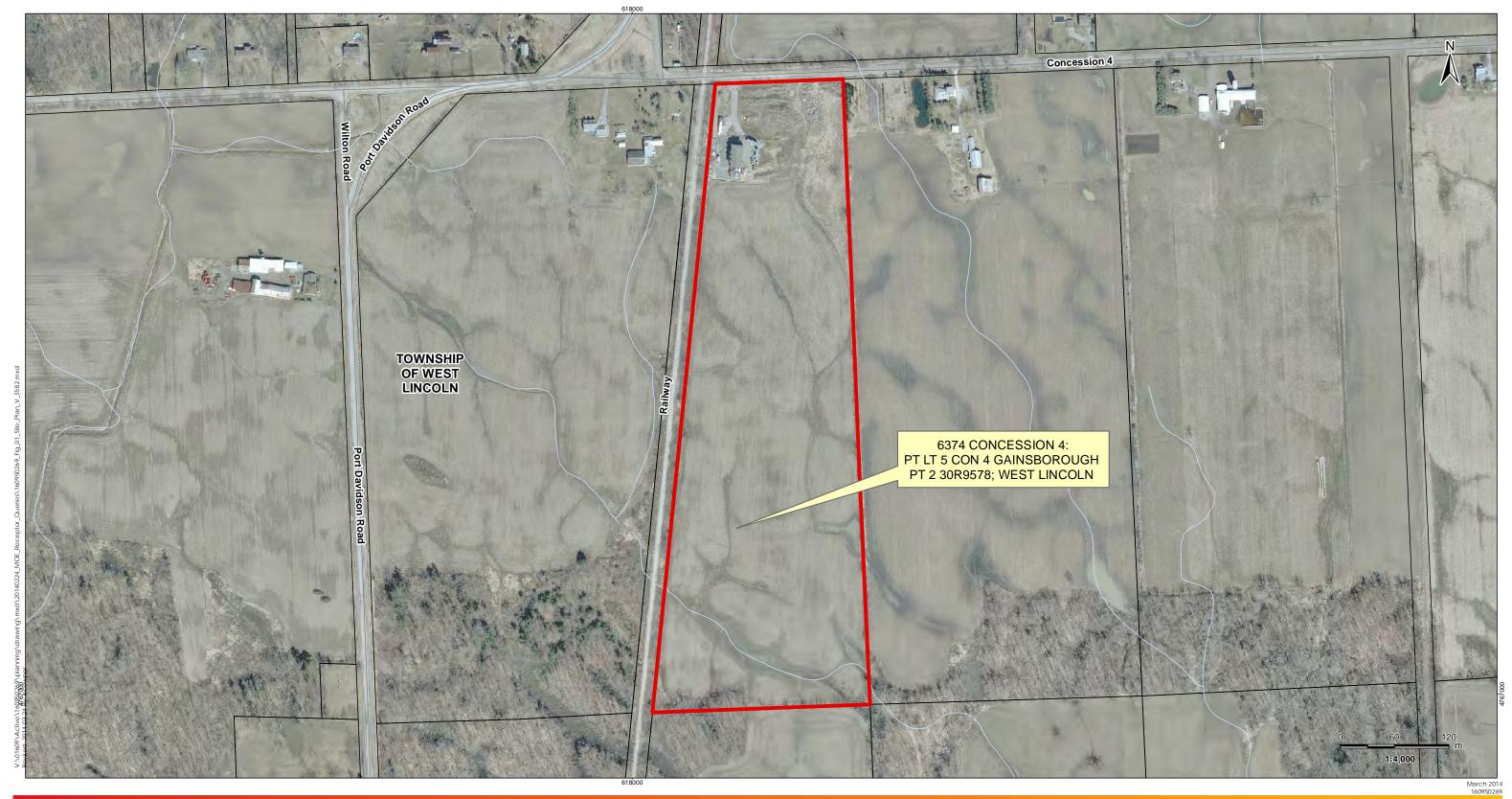
On behalf of the Niagara Region Wind Corporation, I would like to submit this request for access to records under the Freedom of Information and Protection of Privacy Act. Specifically, I would like to request a copy of any land use approvals, building permits, building permit applications and supporting documentation relating to existing and/or proposed structures or land uses on the property located at 6374 Concession Road 4, in the Township of West Lincoln.

More specifically, we are requesting any and all building permits, building permit applications and supporting documentation for the following:

- Existing barn, believed to have been issued in 2006 (or after 2004). Specifically, any documentation that confirms the intended and/or approved use of the existing structure;
- Renewal of the 2006 building permit, believed to have been issued in 2007 (or after 2004);
- Any existing / proposed septic beds, including size, date of approval, construction date, etc.;
- Any entrance driveway, including size, date of approval, construction date, etc.; and
- Any other structures or land uses relating to the subject property since 2004.

A figure illustrating the location of the subject property is attached.

Please find enclosed a personal cheque for \$5 for the cost of this request. The documentation would be preferred to be received via email, if possible, or alternatively by regular mail. Please contact me at the number below if you require further information.


Regards,

Stantec Consulting Ltd.

Julia Kossowski, P.Eng. Project Manager - Power Phone: 519 569 4338

Julia.kossowski@stantec.com

c. Darren Croghan, NRWC, Chris Powell, Stantec

Notes
1. Coordinate System: NAD 1983 UTM Zone 17N

Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2013.

3. Orthoimagery © First Base Solutions, 2010.

Legend
Property Boundary

Existing Features

—— Road

- Abandoned Railway

Watercourse (MNR)

Property Boundary

Niagara Region Wind Corporation

PRELIMINARY

6374 Concession 4

From: Kossowski, Julia

Sent: Friday, April 04, 2014 5:31 PM To: Powell, Chris; Leggett, Al

Subject: Fw: FOI Request for building permit information

Chris. See email below. Please forward to Darren and MOE if you feel it necessary.

Julia

From: Carolyn Langley [mailto:clangley@westlincoln.ca] **Sent**: Friday, April 04, 2014 03:16 PM Mountain Standard Time

To: Kossowski, Julia

Cc: Brian Treble btreble@westlincoln.ca

Subject: RE: FOI Request for building permit information

Dear Julia:

Thank you for your email.

I have been gathering information in order to respond to your FOI request. I am sorry but I cannot confirm if I will be able to meet your April 15th deadline as I am still reviewing the information. Also, I must advise you that if my decision is to release the documents to you that you have requested, I will have to notify the owner of the property who will have the opportunity to appeal my decision which may further delay the provision of documentation to you.

With respect to releasing the documents to the MOE, please be advised that, in this instance, the MOE would be required to follow the same FOI request procedure that you are following.

Carolyn Langley, Clerk

Township of West Lincoln 318 Canborough Street P.O. Box 400 Smithville, Ontario. L0R 2A0

Tel: (905) 957-3346 ext. 6720

Fax: (905) 957-3219

This email may contain confidential and/or privileged information for the sole use of the intended recipient. Any review, disclosure, or distribution by others is strictly prohibited. If you have received this email in error, please contact the sender immediately and delete all copies.

From: Kossowski, Julia [mailto:Julia.Kossowski@stantec.com]

Sent: April-04-14 9:29 AM To: Carolyn Langley; Brian Treble

Cc: Powell, Chris

Subject: FOI Request for building permit information

Good Morning Brian and Carolyn,

I am just following up on my FOI request submitted last week for 6374 Concession Road 4. This information has been requested so that we can respond to questions from the Ministry of Environment. The MOE has now

placed a deadline for us to submit the information by April 15th. Would it be possible for you to provide us with the information before this date? Alternatively, did you have any luck acquiring approval from your lawyers to provide the information directly to the MOE?

Regards, Julia

Julia Kossowski, P. Eng.

Project Manager - Power Stantec 49 Frederick Street Kitchener ON N2H 6M7 Ph: (519) 569-4338

Fx: (519) 579-4239 Cell: (226) 989-5259

julia.kossowski@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Secondary Entrance at 6374 Concession Road 4, West Lincoln (Source: Google Streetview, Photo Taken June 2012)

From: Miller, Denton (ENE) < Denton.Miller@ontario.ca>

Sent: Wednesday, February 12, 2014 1:57 PM

To: Powell, Chris

Cc: Raetsen, Sarah (ENE)

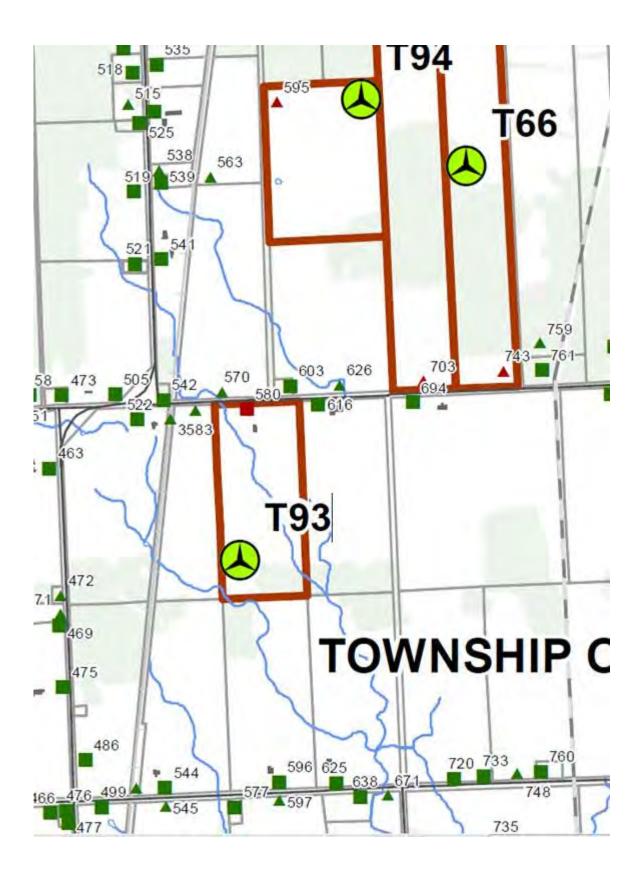
Subject: NRWC info request -5 Letter dated Jan 22, 2014 Receptor 3583

Attachments: EBR Comment re por 3583.docx

Hello Chris

We have been approached by the owner of the lot that contains vacant lot receptor 3583 (re: your Sept 30, 2013 noise report; see diagram below). He has made the following assertion:

There is currently no dwelling on the property, although there is a new barn. The Township of West Lincoln now says can have the upper floor used as a dwelling, provided that changes are made to comply with the building code. The center of the existing building, erected in 2007 is 513 meters from the proposed turbine {T 93}. This building was built by us long before there was an NRWC.


All of the infrastructure on this property was placed there by us after taking possession on January 15, 2004.

Please refer to the attached document for a detailed description of all the noise issues identified by the owner of the lot and provide EAB with a response.

Your response should also address the definition of dwelling as defined Ontario Regulation 359/09 and how it applies to the existing barn on the subject property.

Thank You

DM

Denton Miller | Senior Review Engineer | Team 5 | Environmental Approvals Branch I Ministry of the Environment 2 St. Clair Ave W. 12a Floor Toronto, Ontario, M4V 1L5 | Phone: 416-314-8310 | <u>Denton.Miller@ontario.ca</u>|

From: Powell, Chris

Sent: Thursday, March 06, 2014 12:08 PM

To: Denton.Miller@ontario.ca

Cc:Raetsen, Sarah (ENE); Leggett, Al; Ganesh, Kana; Darren CroghanSubject:RE: NRWC Info Request 6MOE ref file # 1175-972NB9

Attachments: Attachments 1 to 4.pdf; Photo 1 - 5648 Regional Road 65.PNG; Photo 2 - V794

Property.jpg

Denton,

In response to your email below, our GIS and noise leads have reviewed the receptor and turbine information contained in the REA reports to generate a response to the EBR suggestions about the accuracy of individual noise receptors. The following information is provided in regards to receptors V_735, V_794 and V_1762:

1. **V_735** – Property: 5648 Regional Road 65 (Silver Street in MNR data and Bismark Road in Niagara Explorer), West Lincoln (see Attachment 1).

During the initial development of the noise model, and identification of receptors (POR's), our field crews reviewed each of the potential POR's to confirm and verify the appropriate classification of existing structures. Based on their site investigations, our field crew identified this particular property as "potentially commercial – similar to a nursery" due to the presence of similar structures within the property. The location of the receptor is correct, however, the designation could be revised. Regardless, this residence is located 920 m from the closest turbine (T54) and the noise level at this receptor is 36.9 dBA, which is below the 40.0 dBA threshold. A photograph of the subject property is attached for reference (see Photo 1).

<u>Action</u>: The designation of this existing structure will be revised from "vacant" to "existing" in order to reflect the existing dwelling.

2. **V_794** – Property: No specific mailing address exists for this property, which is located on Regional Road 65 (Silver Street in MNR data and Bismark Road in Niagara Explorer), West Lincoln – east of V_735 discussed above (see Attachment 1).

Based on our review of the current aerial photography, field verification during the initial development of the noise model to identify POR's, and review of building permits prior to issuance of the draft site plan, this property is a vacant property. Based on our information, there is no existing dwelling on this property (see Photo 2) and no dwelling was approved prior to the issuance of the draft site plan. As such, a vacant lot receptor (V_794) was appropriately located on the subject property within the noise model. The existing dwelling to the east of receptor V_794 is located on a separate parcel of land and represented by receptor O_3887. Both receptors comply with the minimum distance from a turbine and the noise threshold.

<u>Action</u>: Additional information regarding the alleged location of an existing dwelling on the subject property is requested, if available. Otherwise, our information confirms that there is no existing dwelling on the subject property and no approved dwelling prior to the issuance of the draft site plan.

3. **V_1762** – Property: No specific mailing address exists for this property, which is located on Concession Road 4, West Lincoln (see Attachment 2).

The subject property is located at the intersection of 2 unopened road allowances - Concession 4 (running east-west along the south side of the property) and Dengo Road (running north-south along

the east side of the property. The property is also entirely comprised of significant woodland and wetland with no open areas. There is no existing dwelling on the subject property, however, a vacant lot receptor was identified for the purposes of the noise model.

It is possible that questions arising regarding the location of V_1762 may be in regards to its location relative to a potential dwelling located on the property to the north (2090 Dengo Road, West Lincoln). This property is represented in the noise model by receptor O_1758 (2090 Dengo Road, West Lincoln coordinate 623376.46; 623376.46), which is located at the north of the property adjacent to the open portion of Dengo Rd.

Through air photo interpretation, a second structure is also located at the south of this property (i.e. closer to V_1762 but on the adjacent parcel) (see Attachment 2). This second structure could be a dwelling, however verification of this structure was not possible through the physical verification process due to property access and isolation of the property. It appears to be accessible only from a private road that extends from the end of the opened section of Dengo Rd. at the north of the property and is not visible from a municipal right of way.

Nonetheless, this structure was recognized during the development of the noise model and project layout. While not confirmed as a receptor in the noise model, our noise team ensured that it remained outside of the appropriate setbacks and below the noise threshold. As a result, this structure is located 780 m from the closest turbine (T27) and the noise level at this receptor is 38.7 dBA, which is below the 40.0 dBA threshold.

<u>Action</u>: We defer to the MOE as to how to address this potential second noise receptor on the property (i.e. shift location O_1958, or add an additional receptor to the model). In terms of V_1762, our information confirms that there is no existing dwelling on that property or no approved dwelling prior to the issuance of the draft site plan.

The following information is provided in regards to the closest turbine to receptors O_148, O_582 and O_674:

4. O_148 - Property 7057 Concession 4 Road, West Lincoln (see Attachment 3).

This receptor is correctly positioned on an existing dwelling that fronts onto Concession 4. As illustrated on Attachment 3, Turbine T81 is correctly identified as the closest turbine to receptor O_148 (distance = approx. 1,180 m). Despite the EBR comments below, Turbine T08 is not even the second closest turbine to this receptor (Turbines T52 and T53 are the next nearest). Turbine T08 is located approximately 2806 m from receptor O_148.

5. O_582 – Property: 6367 Elcho Road, West Lincoln (see Attachment 4). O_674 – Property: 6227 Elcho Road, West Lincoln (see Attachment 4).

Both of these receptors are correctly positioned on exiting dwellings fronting onto Elcho Rd. As illustrated on Attachment 4, the closest turbine to these receptors is Turbine T07, located 612 m and 558 m away, respectively.

These responses are based on the information collected during the preparation of the noise model and project layout, including existing mapping, air photo interpretation, site investigations and consultation with the Township of West Lincoln to identify newly approved / potentially unconstructed dwellings or other possible noise receptors.

We trust that this additional information addresses the comments provided in the EBR comment below.

If you have any further questions, please do not hesitate to let us know.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Stantec

49 Frederick Street Kitchener ON N2H 6M7

Phone: (519) 585-7416 Cell: (519) 501-2368 Fax: (519) 579-6733

Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Friday, February 21, 2014 2:49 PM

To: Powell, Chris

Cc: Raetsen, Sarah (ENE)

Subject: NRWC Info Request 6 MOE ref file # 1175-972NB9

Hello Chris

Comments via the EBR allege that the following three lots were incorrectly identified as vacant lots (existing dwellings are alleged to be present).

- 1. 735.
- 2. 794 and
- 3. 1762

The correspondence further states that following three receptors are not correctly referenced from a distance perspective to the closest proposed turbine.

- 1. 582.
- 2. 674 and
- 3. 148

Please review the above issues and respond to this E-mail by March 7, 2014.

The EBR comment is copied below for your reference (yellow highlight).

Thank you

Regards **Denton Miller** 416-314-8310

From: XXXXXXXX

Sent: February 17, 2014 6:03 PM

To: XXXXXX Cc: XXXXXX

Subject: Fw: Mistakes

Ladies

It is difficult to respect and support the role that the MOE is taking in the supervisory role of the two wind projects in West Lincoln. I refer of course to the HAF/IPC project and the pending NRWC project. (012-0613). Several years ago MOE guidelines which we have respected were written to guide the big business wind enterprises that would invade our province. The only problem which is evidencing itself now is that those guidelines can have numerous exceptions in favour of the wind companies....they can BE changed, omitted, redirected or ignored. ALL those guidelines were supposedly developed to protect rural Ontario. Rural residents can no longer demand respect from the bullies you call Wind Companies.

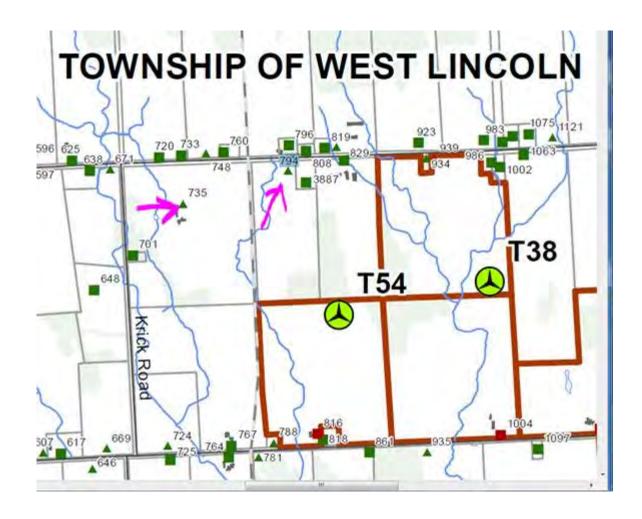
There have been five infractions during the HAF/IPC development. I have already listed these for you in a previous e-mail dated February 9th, 2014. The most recent mistake....the positioning of 3 out of 5 turbines too close to non host property lines is the ultimate mistake. Unfortunately.... the wind developer is not prepared to correct his mistakes. The MOE is prepared to allow the company to correct their errors retroactively. The non host property owners may have to take the company to further litigation in a court of law.

Also the MOE did not complete due diligence in the Burnaby Skydiving facility in Wainfleet when IWTs were approved so close to a functioning skydiving business. This tells me that the provincial government MOE agency just slides along and shows neglect instead of working in a supervisory capacity.

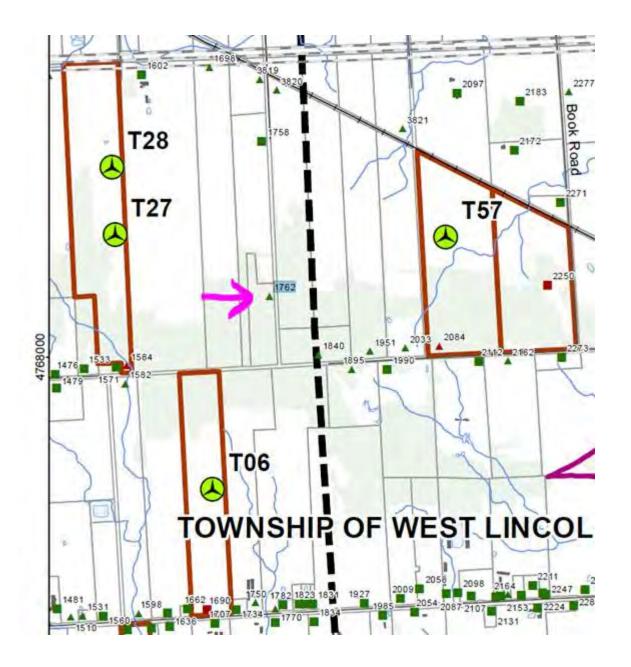
Does the MOE not appreciate that the lives of rural Ontarians are in the hands of this supervisory division??? The outline of rules and regulations devised by the MOE with regard to monitoring BIG WIND COMPANIES appears to have evolved into a complete waste of time. Like all policing efforts.... rules mean nothing if they are not enforced. You break the rules. You pay the cost. In the case of HAF/IPC the non compliant wind turbines MUST come down or be moved!!! The decision is simple. The solution is simple.

The residents of West Lincoln living in the area for the proposed NRWC project have made a commitment and mission (beyond all others) to find all the mistakes within the project. I am reluctant to help the MOE complete it's job. I would assume that the NRWC proposal is checked by the MOE for inaccuracies. There are hundreds of mistakes. Most recently we have found so many properties marked as Vacant in the Stantec/NRWC paperwork. In actuality these are occupied Non Host properties. This raises many additional questions about mistakes. How many more properties marked Vacant are really occupied properties??? They will not have been measured for accurate distances from the proposed wind turbines. (For exampleReceptors 1750, 735, 794 and 1762) Other indicated non host properties have incorrect distances from turbines. (For

example...Receptors 582 and 674 in relation to each other and T07.....and Receptor 148 is actually closest to T08 but Stantec says T81) And so on it goes.....


The supervising, monitoring and correcting tasks involved in the NRWC project are not the responsibilities of the residents of West Lincoln. These are the responsibilities of the MOE. If the NRWC wind turbines are erected without caution....the MOE will be facing numerous challenges to correct the whiffle and waffle and mess which should have been corrected long before the project was approved. I think that the MOE will find that when true coordinates are found and accurate locations are indicated, the NRWC project of 77-80 3MW IWTs may not fit into our community. And all future corrections and manoeuvring of the MOE will never make it work.

It is the task of the MOE to check everything the residents of West Lincoln have questioned ...the Natural Heritage details, distances, noise/decibel inaccuracies, the safety of our children, turbine locations, receptor inaccuracies. It is the task of the MOE to respond with due diligence.


The alternative is to cancel this project 012-0613.

Thank you, XXXXX

Vacant Lot 735 & 794

Vacant Lot 1762

Project Study Area

Proposed Project Components Non-participating Receptors

Proposed Turbine Location

Existing Features

----- Road

----- Abandoned Railway

Watercourse (MNR) Property Boundary

----- Sound Level Contours 40dBA

Vacant

Occupied

- Coordinate System: NAD 1983 UTM Zone 17N).
 Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2011.
 Orthoimagery source: First Base Solutions, Date Spring 2010.

Figure No.

Proposed Project Components Non-participating Receptors Proposed Turbine Location

Occupied

Existing Features

Vacant

----- Road

----- Active Railway

Watercourse (MNR)

Property Boundary

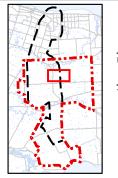
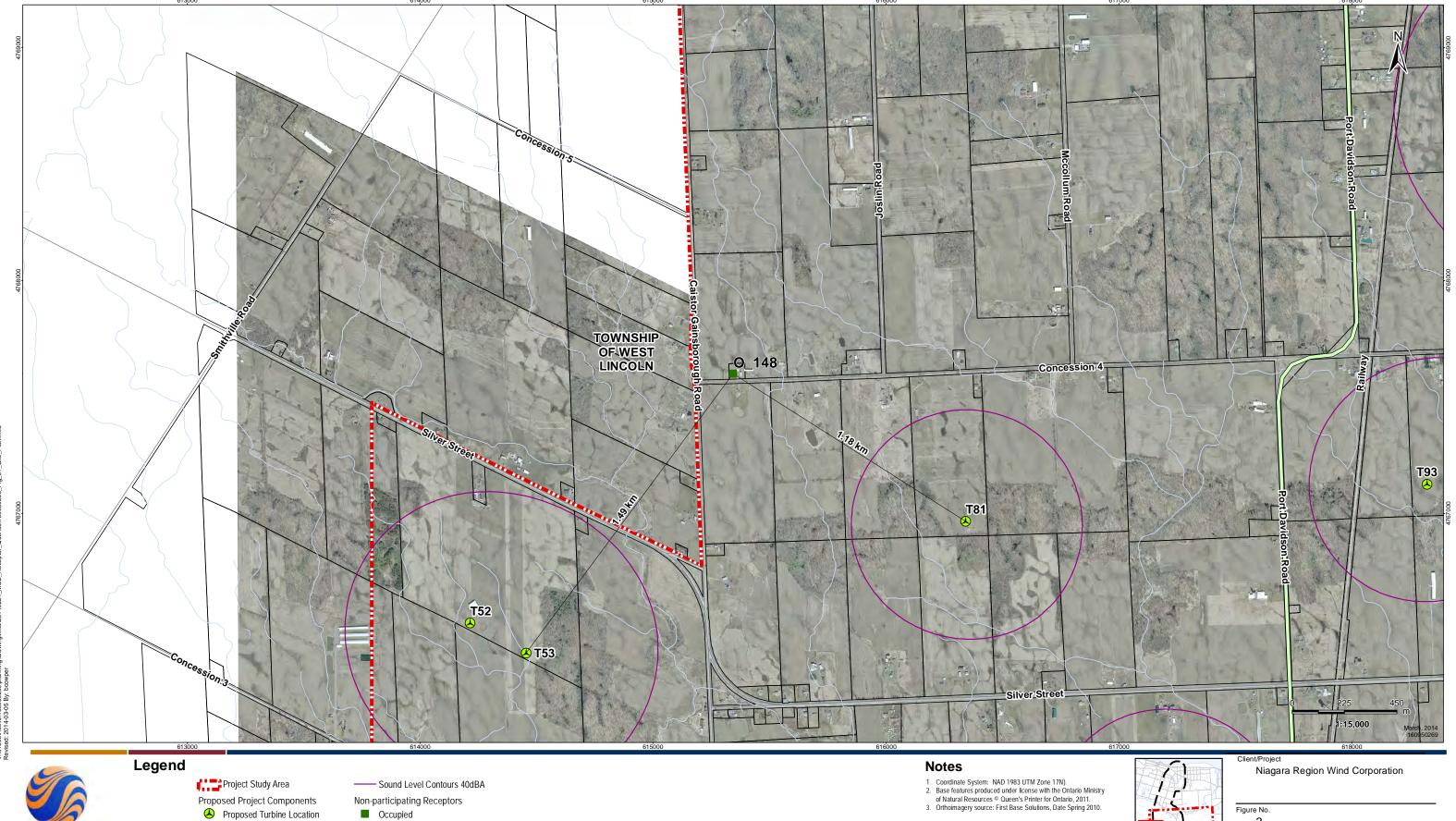
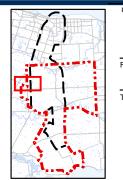



Figure No.

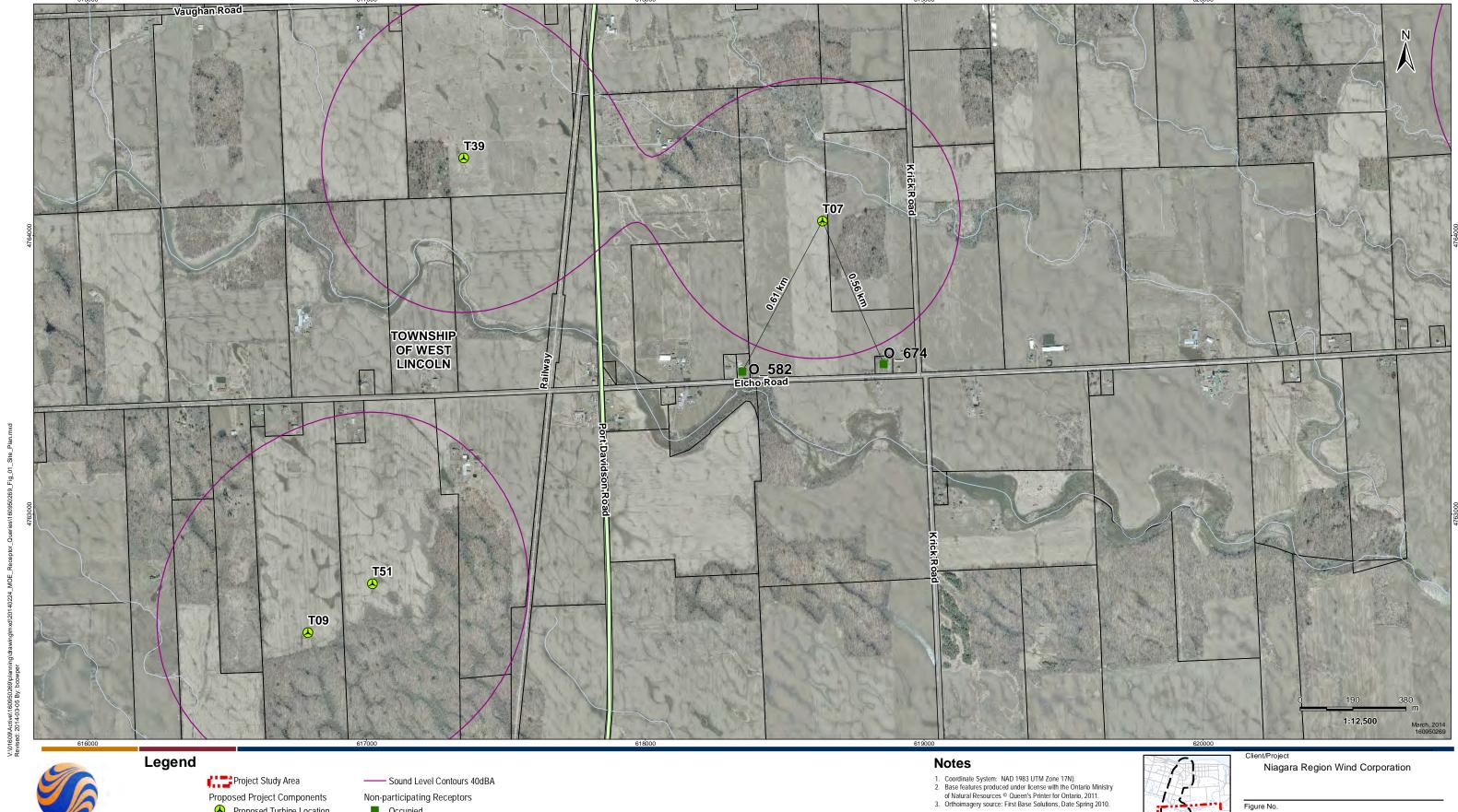
2

Preferred Transmission Line Route

Existing Features


----- Road

---- Abandoned Railway


Watercourse (MNR)

Property Boundary

Vacant

3

Proposed Turbine Location

Preferred Transmission Line Route

Occupied Vacant

Existing Features

----- Road

----- Abandoned Railway

Watercourse (MNR)

Property Boundary

Figure No.

From: Powell, Chris

Sent: Thursday, March 13, 2014 6:04 PM

To: Denton.Miller@ontario.ca

Cc: Raetsen, Sarah (ENE); Darren Croghan; Leggett, Al (Al.Leggett@stantec.com); Ganesh,

Kana

Subject: Re: NRWC Info request 7

Attachments: Receptors 1481 to 1598 - Fig 2-27.jpg; Photo 1560.png; Photo_1510_1531.png

Denton,

The following noise receptors are identified between Receptors 1481 and 1598 in the noise model and on the site plan figures (see attached screen capture from Figure 2.27 of the PDR):

Receptor	Noise	Setback to Turbine	Closest Turbine	Description (see attached photos)
V_1510	37.1 dBA	1039 m	TO1	"Photo 1510_1531" – large house like building (similar to a hotel or Bed and Breakfast) at left of photo;
V_1531	37.4 dBA	998 m	TO1	"Photo 1510_1531" – existing building with garages
O_1560	37.9 dBA	927 m	T01	"Photo 1560" – existing dwelling

All of these receivers satisfy the noise threshold of 40.0 dBA and are setback a minimum of 550m from the nearest turbine in accordance with O. Reg. 359/09.

Upon further reviewing our information for this area, we can confirm that all parcels between Receptors 1481 and 1598 are represented by a noise receptor and that there are no "occupied homes" that have been missed in the noise model.

We trust this addresses the comment from the public with respect the apparent missing occupied home in this area.

Sincerely,

Chris

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, March 13, 2014 1:50 PM

To: Powell, Chris

Cc: Raetsen, Sarah (ENE) **Subject:** NRWC Info request 7

Hello Chris

Please review the e-mail below and:

Comment on the statement;

Between receptors 1481 and 1598, there is an occupied home that is not shown on their diagrams at all nor is it included in the NRWC reports as a receptor.

Please provide your comments by March 28, 2014.

Thank you

Regards Denton Miller 416-314-8310

From:

Sent: March 12, 2014 12:00 PM To: Garcia-Wright, Agatha (ENE)

Subject: Fwd: Fw: Fwd: Letter Response- Ms. Shellie Correia- Dated March 6, 2014

Ms. Garcia-Wright,

I am in receipt of your response to my letter. However, I note that you did not comment on the MOE's processes or your intentions with regard to the errors that residents are finding in the NRWC application. I have pasted two paragraphs from my original letter in red below. What does the MOE intend to do about the abundance of errors that we have found and that we continue to find?

Mothers Against Wind Turbines and many Niagara residents have written to the MOE about gaps and errors in the application of the Niagara Region Wind Corporation (NRWC) project documents. We continue to find more and more errors in the NRWC documents and that is of great concern since these are the first 3MW wind turbines proposed for Ontario. Further to the issues/errors that have already been reported to you about the NRWC application, it would seem that additional mistakes have been made with respect to their "vacant" designations and some of these have already been reported to you. We have been finding more with alarming regularity and quite easily. Again, that brings into question the diligence of the MOE as well as that of the wind developers and the accuracy of their applications. As a sample, receptors 1750, 735, 794 and 1762 are all occupied homes within the definition contained in the regulations yet they show as vacant in the NRWC's reports. Between receptors 1481 and 1598, there is an occupied home that is not shown on their diagrams at all nor is it included in the NRWC reports as a receptor. We have other examples as well and we will continue to explore other parts of the project area to identify additional errors. Considering that we have barely initiated this exercise, it is appalling that we have already detected this many errors. Shouldn't that be the MOE's role?

It would also appear that inaccuracy in measuring distances is another issue that is common among wind developers. Mothers Against Wind Turbines is well aware of the correspondence sent to you by a resident of our community regarding the errors in the NRWC application whereby geocoded address data was used to estimate distances. Significant errors were pointed out to you in that correspondence and we will be following the MOE response and reaction in that regard. It, is yet another example of the arrogance and disrespect that wind developers display and that the MOE ignores. Why does the MOE permit this type of engineering sloppiness and why has the process been set up so that wind developers can so readily submit inaccurate data in error and by design?

Powell, Chris

From: Powell, Chris

Sent: Wednesday, April 16, 2014 9:46 AM

To: Denton.Miller@ontario.ca; Raetsen, Sarah (ENE)

Cc: Darren Croghan; Merv Croghan; Shiloh Berriman (sberriman@nrwc.ca); Leggett, Al

(Al.Leggett@stantec.com); Ganesh, Kana; Hung, Timothy; Hassan.Shahriar@enercon.de

Subject: FW: Niagara Region Wind Farm Info Request - 2e , 8 and 9 MOE ref file #

1175-972NB9

Attachments: Letter regarding Sound Power Levels.pdf; Sound Power Level E-101 NRWC 140415.pdf;

Sound Power Level E-82 NRWC 140415.pdf; KCE measurement excerpts E-101.pdf; KCE

measurement excerpt E-82.pdf

Importance: High

Denton,

In response to your email dated April 3, 2014, and further to our conference calls over this past week, we provide the following information to address your comments:

1. Info Request 2e - Sound Power Levels of the Subject Turbines

Based on follow-up discussions with Enercon, a more definitive statement confirming the use of the 104.8 dBA noise data for the E101 turbines proposed for the NRWC Project has been obtained from Enercon. Attached to this email are the following documents confirming the use of the appropriate data in the noise assessment report for this Project:

- a. Letter from Enercon entitled Sound Power Level (SPL) documents of the ENERCON Wind Energy Converters (WECs) E-101 3.0MW and the E-82 2.3MW for Niagara Region Wind Corporation (NRWC) dated April 15, 2014, and corresponding attachments.
 - 1) Sound Power Level E-101 NRWC dated April 15, 2014
 - 2) KÖTTER measurement excerpts dated April 23, 2013 and March 13, 2013
 - 3) Sound Power Level E-82 NRWC dated April 15, 2014
 - 4) KÖTTER measurement excerpt dated February 8, 2010

This letter provides the additional confirmation requested in your last email and greater certainty with respect to the sound power level information for the turbines being proposed for the NRWC Project.

2. Info Request 8 – Munich Higher Regional Court's Decision pertinent to impulsive sound from Enercon E-82 wind turbines

The following comments have been provided by Enercon in response to MOE's request for information on this issue:

The article referenced is in regard to a claim and subsequent ruling which has been made against ENERCON regarding the impulsivity of E-82 turbines in one of its wind parks near Munich, Germany.

ENERCON is in full disagreement with the ruling and are launching a full appeal against the region. In response, as per the official comments from ENERCON GmbH made on this issue.

"for us, this ruling is completely incomprehensible", says Felix Rehwald, Spokesperson for Europe's largest wind turbine manufacturer Enercon.

He continues to comment that ENERCON manufactures, sells and guarantees its turbines worldwide against tonality (in accordance with the IEC standards) and furthermore that Enercon's own specialists in sound power have yet to yield any measurements which would indicate impulsivity of the turbines and as such, Enercon is launching counter-proceedings in the way of an appeal against the ruling.

The court case in Germany is not related to the NRWC project from a technical and environmental permitting perspective.

3. Info Request 9 – Cadna files for Existing Rosa Flora Turbine

> In regards to the questions raised pertaining to the Cadna files, we will circulate the correct Cadna files to the MOE under a separate email, which will be available via an FTP site for your review. The Cadna file will illustrate the correct sound power level (103.5 dBA) for the Rosa Flora Turbine, as it was used in the noise model to generate the results in the Noise Assessment Report dated September 2013.

> The Cadna file previously provided on March 17, 2014 identifying a sound power level for this turbine of 101 dBA (correction factor of -2.5 dBA) was not used in the modelling exercise for this Project.

The Rosa Flora turbine is a 0.65 MW turbine located approximately 3,500 m from the nearest NRWC turbine. As per the Noise Assessment Report, the maximum sound power level for this turbine used in the model was 103.5 dBA (Section 3.3, page 3.9), which was rounded to 104 in Table 3.8. This is further confirmed in the sample calculation and Cadna/A input/outputs table provided in Appendix E and in the adjusted emission level for the Rosa Flora turbine identified in Table F1 of Appendix F of the Noise Assessment Report (Stantec, September 2014).

Based on the above, we trust that the above information is sufficient to address MOE's concerns as expressed in your email dated April 3, 2014.

If you have any questions, please do not hesitate to call.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Stantec

49 Frederick Street Kitchener ON N2H 6M7

Phone: (519) 585-7416 Cell: (519) 501-2368 Fax: (519) 579-6733 Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, April 03, 2014 1:40 PM

To: Kossowski, Julia

Cc: Raetsen, Sarah (ENE); Powell, Chris; Ganesh, Kana; Leggett, Al; darrenc@nrwc.ca; Shiloh Berriman;

mervcroghan@nrwc.ca; Hung, Timothy

Subject: FW: Niagara Region Wind Farm Info Request - 2e , 8 and 9 MOE ref file # 1175-972NB9

Hi Chris / Julia

Below are:

- 1. Additional comments to info request 2 (Sound Power Levels of the subject turbines),
- 2. Two new information requests (8 & 9), and
- 3. A summary of the information requests to date (attached).

1. Additional comments to Info Request 2

With respect to Enercon's attached document, I still have concerns with their specification of the applicable sound power level {RE: Section 6.2.2. of Noise Guidelines for Wind Farms}.

Specifically the use of the word **suggests** is problematic. (reference copied below).

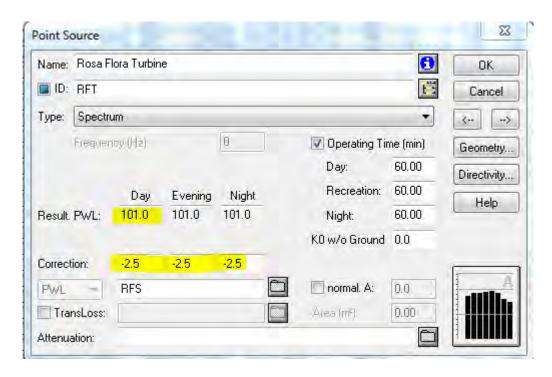
The 104.8 dBA as presented in the Kotter document dated April 23, 2013 coincides with the Sound Power Level guarantee (95% rated power or higher) provided by ENERCON to the Niagara Region Wind Corporation. As such, ENERCON suggests that this document is more applicable to the Niagara Region Wind Corporation facility as opposed to the estimated 106 dBA presented in the ENERCON document.

Consequently, in the absence of a definitive statement from Enercon , I will be contacting you next week to discuss how my review will address this issue.

2. Info Request 8

Please ask Enercon to comment on the following court decision identified via an EBR comment:

The Munich Higher Regional Court's decision pertinent to impulsive sound from Enercon E-82 wind turbines in a wind farm located in Rennertshofen in the district of Neuburg-Schrobenhausen. Judgment OLG München 14.08.2012


Specifically;

- 1. What was the issue?
- 2. What was the outcome? and
- 3. How is this issue related to the turbines proposed in the NRWC

Please provide comments by April 17, 2014.

3. Info Request 9:

The Cadna files note the following sound power level (101.0 dBA) for Rosa Flora Turbine:

The Noise Report notes the following sound power level (104 dBA) for the same turbine.

Table 3.8	Assessed Noise Sources within 5 km	Associated with A	djacent or Pr	oposed Wind F	arms	
Source ID	Source Description	Sound Power Level [dBA]	UTM Coordinates			
		[UDA]	X [m]	Y [m]	Z [m]	
RF	Rosa Flora Turbine	104	615270	4756417	75	

Please comment on the oversight between both sources of data, and the potential impact on the calculated sound pressure levels.

Please provide comments by April 17, 2014.

Regards
Denton Miller
416-314-8310

From: Kossowski, Julia [mailto:Julia.Kossowski@stantec.com]

Sent: March 25, 2014 4:35 PM **To:** Miller, Denton (ENE)

Cc: Raetsen, Sarah (ENE); Powell, Chris; Ganesh, Kana; Leggett, Al; darrenc@nrwc.ca; Shiloh Berriman

(sberriman@nrwc.ca); mervcroghan@nrwc.ca; Hung, Timothy

Subject: FW: Niagara Region Wind Farm Info Request -2e MOE ref file # 1175-972NB9

Hello Denton,

On behalf of Chris Powell and NRWC, please find attached ENERCON's request to your email below dated March 17, 2014.

Please contact us if you require additional information.

Kind Regards, Julia

Julia Kossowski, P. Eng.

Project Manager - Power Stantec 49 Frederick Street Kitchener ON N2H 6M7 Ph: (519) 569-4338 Fx: (519) 579-4239 Cell: (226) 989-5259 julia.kossowski@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Monday, March 17, 2014 02:37 PM

To: Powell, Chris; Raetsen, Sarah (ENE) < Sarah.Raetsen@ontario.ca; Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca' <<u>darrenc@nrwc.ca</u>>; 'sberriman@nrwc.ca' <<u>sberriman@nrwc.ca</u>>;

'mervcroghan@nrwc.ca' < mervcroghan@nrwc.ca >

Subject: RE: Niagara Region Wind Farm Info Request -2e MOE ref file # 1175-972NB9

Thank you for your response Chris.

Summary:

ENERCON considers the measurements values to be <u>satisfactory representative</u> values of the E-101 3,050 kW and E-82 E2 2,300 kW noise levels

	Octave band sound power level in dB(A)							
Frequency (Hz)	63	125	250	500	1,000	2,000	4,000	8,000
E-101 3,050 kW @ 8.3m/s	86.3	91.6	98.6	100.8	98.3	92.8	85.9	73.3
E-82 E2 2,300 kW @ 9 m/s	86.6	94.6	94.3	97.3	98.7	93.8	81.5	73.4

ISSUE:

Unfortunately the response from Enercon (<u>satisfactory representative</u>) is not definitive enough for our review purposes. It is requested that Enercon explain why they have published at least two different data sheets for the

same equipment (E-101), that have different values for the 95% rated capacity sound power levels (106 dBA and 104.8 dBA)?

It is also requested that Enercon explain why the above sound power levels for the E-101 are applicable to the Niagara Region Wind Corporation facility as opposed to the 106 dBA data that was referenced in a previous e-mail?

Please provide a response by March 25, 2014.

Regards Denton Miller 416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: March 17, 2014 1:25 PM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca'

Subject: RE: Niagara Region Wind Farm Info Request -2d MOE ref file # 1175-972NB9

Denton,

The attached information has been provided by Enercon in response to your email dated March 12, 2014. The values contained in the attachment provide the A-weighted values for the E-101 and E-82 turbines to 95% rated capacity, while the values included in Table 3.2 of the Noise Assessment Report (as attached to your email) are linear weighted values. The A-weighted values provided by Enercon in the attached table are consistent with the information provided previously by Enercon to Stantec for use in the noise model. These values were converted to linear weighted values following standard conversion methods and incorporated accordingly into the noise model and Noise Assessment Report.

In regards to your second comment, the requested Cadna-A file has been provided under a separate email earlier today for your review.

We trust that this information will be sufficient. If you have any further questions, please do not hesitate to ask.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Associate, Environmental Services Stantec Consulting Ltd.

Office: (519) 585-7416 Cell: (519) 501-2368 chris.powell@stantec.com

From: Miller, Denton (ENE) [Denton.Miller@ontario.ca]

Sent: March 12, 2014 12:22 PM

To: Powell, Chris; Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca'

Subject: RE: Niagara Region Wind Farm Info Request -2d MOE ref file # 1175-972NB9

Thank you for your response Chris

Summary:

In accordance with Section 6.2.2 of the Noise Guidelines for Wind Farms your firm was requested to provide the sound power levels, frequency spectra in octave bands (63 to 8000 Hz), and tonality at integer wind speeds from 6 to 10 m/s for the subject wind turbines. (E-82 & E-101)

Your firm responded (para-phrased) that this information is not necessary, as your analysis based on the 95% rated capacity sound power levels of the turbines. (This approach is acceptable to MOE.)

Enercon further notes (Mar 7, 2014 e-mail) that the SPL of the E-82 and the E-101 Wind Energy Converters (WECs) do not exceed beyond the values at 95% rated capacity for hub heights specified in its **Sound Power Level documents**.

Issue:

There are several different Enercon documents noting different values for the 95% rated capacity sound power levels. For example:

- There is a April 2013 Enercon document (attached) noting that the 95% rated capacity sound power level for the E-101 3050 kW turbine is 106 dBA. (NRWC report states this value to be 104.8 dBA) (it is acknowledged that the ratings differ by 50 kW, Niagara turbines are smaller)
- 2. There is a April 2010 Enercon document (attached) noting that the 95% rated capacity sound power level for the E-82 2000 kW turbine is 103.5 dBA; (NRWC report states this value to be 103.3 dBA) (it is acknowledged that the ratings differ by 300 kW Niagara turbines are larger)

Requests:

1. Please provide by **March 20, 2014,** a written statement from Enercon confirming that the values noted in Table 3.2 of your Report (Sept 30, 2013) are accurate. (For reference the table is copied below.)

Table 3.2	Highest Wind Turbine Sound Emission Corresponding to 95% or above Rated
	Electrical Output Power

Description		Octave Band Sound Power Level (dB ref. 10-12 Watts)							
Frequency [Hz]	63	125	250	500	1k	2k	4k	8k	dB/dBA
ENERCON model E101 model at 8.3 m/s	112.5	107.7	107.2	104.0	98.3	91.6	85	74.4	113.9/ 104.8
ENERCON model E82 model at 9 m/s	112.8	110.8	103	100.5	98.7	92.6	80.5	74.5	115.5/ 103.3

2. Please also forward the cadna A file (s) to this office.

Regards Denton Miller 416-314-8310 **From:** Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: March 7, 2014 4:17 PM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca'

Subject: RE: Niagara Region Wind Farm Info Request -2c MOE ref file # 1175-972NB9

Denton,

In preparing the Noise Assessment Report, Stantec and NRWC understood this issue and the requirements outlined in the MOE Noise Guidelines for Wind Farms. This issue was raised by NRWC and discussed during the project design stage with the manufacturer, who confirmed that despite the change in power with wind speed and height their guaranteed maximum sound power at rated capacity would not change for the proposed turbine models, and that tonality would not result at these higher turbine heights or wind speeds. This was confirmed and guaranteed through a separate letter from Enercon, which has been provided to the MOE as part of the Noise Assessment Report.

Following your email, we have discussed this further with Enercon and they have prepared additional information to address your specific comment with respect to hub height and tonality (see attached). In the supplemental information, they have reconfirmed the following:

- 1. that the sound power levels of the E82 and E101 turbines do not exceed beyond the values at 95% rated capacity,
- 2. that the turbines shall not exceed the guaranteed maximum sound power levels for hub heights specified; and
- 3. that the tonal audibility shall be equal to or less than 2 dB over the whole operational range, including at wind speeds of 10m/s.

Stantec confirms that the analysis provided in the Noise Assessment Report considered the spectral sound power data (i.e. frequency based data) based on the IEC test and overall sound power level corresponding to 95% rated electrical output power as guaranteed by the manufacturer (Enercon). The manufacturer has confirmed that the sound power level at 95% rated capacity is independent of height and wind speeds and has addressed the tonality concerns in a separate letter attached.

The MOE raised similar concerns during the screening of REA application for completeness and we provided additional discussion and rationale at that time. We understood that this additional information was sufficient to address your concern, but trust that the supplemental information now provided by Enercon further supports the completion of your technical review.

If you require further information in this regard, we request that a meeting be held to review and discuss this issue with our noise experts as soon as possible.

0					
N	ın	\sim	$\boldsymbol{\Delta}$	re	1

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Stantec

49 Frederick Street Kitchener ON N2H 6M7

Phone: (519) 585-7416 Cell: (519) 501-2368 Fax: (519) 579-6733 Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Friday, February 21, 2014 12:39 PM

To: Powell, Chris; Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca'

Subject: RE: Niagara Region Wind Farm Info Request -2c MOE ref file # 1175-972NB9

Hello Chris

I have yet to receive a response to the e-mails I sent to your office on January 24, and 30, 2014 regarding the sound power levels of the proposed turbines (questions 2 & 3 in the January 24, 2014 email to your office; copied below).

Please provide a response by March 7, 2014. If your firm is unable to provide a response by this date I will have to stop the clock on our service guarantee time.

If you have any questions, please feel free to contact me.

PS:

I also have additional questions via EBR comments pertinent to vacant lots which I will send to you in a separate e-mail later today.

Regards **Denton Miller** 416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: January 30, 2014 8:29 AM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca' Subject: Re: Niagara Region Wind Farm Information request -2 MOE ref file # 1175-972NB9

Ok. I'll follow up with Kana and we will get back to you shortly.

Chris Chris Powell, M.A. **Project Manager Environmental Planner** Stantec

Cell: (519) 501-2368

Sent from my Blackberry

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, January 30, 2014 08:26 AM

To: Powell, Chris; Raetsen, Sarah (ENE) < Sarah.Raetsen@ontario.ca >; Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; Darren Croghan <darrenc@nrwc.ca>; Shiloh Berriman (sberriman@nrwc.ca)

<<u>sberriman@nrwc.ca</u>>; Merv Croghan <<u>mervcroghan@nrwc.ca</u>>

Subject: RE: Niagara Region Wind Farm Information request -2 MOE ref file # 1175-972NB9

Hello Chris.

Thank you for your response to my questions noted in your previous e-mail (January 29, 2014 10:40 AM).

The e-mail has answered question # 1 (RE: Participating Receptors), however questions 2 and 3 still require attention.

Below is additional rationale as to why questions # 2 and 3 will require further clarification from your firm:

Rationale:

Documents prepared by the International Electrotechnical Commission note that the apparent sound power level is correlated to the acoustic reference wind speed and not to the wind speed at hub height. An increase in hub height will increase the apparent sound power level and might have an unpredictable effect on tonality.

The following examples from Enercon publications note this phenomenon:

Example 1: Sound Power Level for the E-82 with 2300 kW rated power

hub height	78 m	85 m	98 m	108 m
in 10 m height				4777
5 m/s	96,3 dB(A)	96.6 dB(A)	97.2 dB(A)	97.5 dB(A)
6 m/s	100.7 dB(A)	101.0 dB(A)	101.6 dB(A)	101.9 dB(A)
7 m/s	103.3 dB(A)	103.5 dB(A)	103.6 dB(A)	103.6 dB(A)
8 m/s	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)
9 m/s	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)
10 m/s	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)
95% rated power	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)

Example 2:

Sound Power Level for the E-33 with 330 kW rated power

hub height	37 m	44 m	49 m	50 m
5 m/s	90.9 dB(A)	91.0 dB(A)	91.3 dB(A)	91.3 dB(A)
6 m/s	95.1 dB(A)	96.0 dB(A)	96.5 dB(A)	96.5 dB(A)
7 m/s	98.6 dB(A)	98.9 dB(A)	99.0 dB(A)	99.0 dB(A)
8 m/s	99.7 dB(A)	99.8 dB(A)	99.9 dB(A)	99.9 dB(A)
9 m/s	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)
10 m/s	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)
95% rated power	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)

Therefore in accordance with Section 6.2.2 of the Noise Guidelines for Wind Farms please provide the sound power levels, frequency spectra in octave bands (63 to 8000 Hz), and tonality at integer wind speeds from 6 to 10 m/s for the subject wind turbines.

I have another question which I send in a separate e-mail later today.

Regards
Denton Miller
416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: January 29, 2014 10:40 AM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; Darren Croghan; Shiloh Berriman (sberriman@nrwc.ca); Merv Croghan

Subject: RE: Niagara Region Wind Farm Information request MOE ref file # 1175-972NB9

Denton,

In response to your email from Friday, January 24, 2014, Kana has provided the justification you are seeking to address your specific questions. Based on his input, we offer the following responses:

Question 1: Participating Receptors

All of the participating receptors will include project infrastructure and adhere to the definition provided in O. Reg. 359/09 and include a project component.

The REA application considered 80 turbines during the project planning and design stages, including the completion of the various technical reports. The 80 turbine layout is compliant with the noise requirements of the regulation. In order to meet the FIT contract requirements of 230 MW, only 77 of these 80 turbines are to be built (each rated at 3 MW - one or more to be de-rated to satisfy the 230MW requirement).

The specific turbines to be constructed will depend on the detailed engineering and wind resourcing studies to be completed. The decision to drop a turbine depends highly on wind power, and it is likely that a turbine may be dropped from a cluster of turbines where more than one turbine is located within the same property (due to wind resources). Based on that understanding, all participating receptors will continue to fit the definition of participating receptors.

In the event that a turbine is dropped from a property with only one turbine, the design of the wind farm will ensure that project infrastructure remains on that property to ensure its compliance as a participating receptor, in the event that it violates the 40.0 dBA noise threshold, as defined in the regulation.

Question 2: Re Table 3.1; Sound Power Levels for the E-101

In preparing the noise model and assessment, Stantec concluded the data is valid based on the following:

- Stantec used sound power levels in the analysis, which is a parameter independent of height of the source:
- The manufacturer has guaranteed /confirmed to NRWC that their machine will meet the sound b. power requirements as specified in the test sheet (included with the report); and
- IEC 61400-11 (i.e., international standard CAN/CSA-C61400-11-07) uses normalized height so that C. measurements are independent of height and terrain (i.e. location, where it was measured).

As such, the manufacturer's data values used in the noise model for predicting sound power levels at the various receptors are valid for the E-101 turbines.

Question 3: Re Table 3.1; Sound Power Levels for the E-82

Similar to the above rationale, the manufacturer's data values used in the noise model for predicting sound power levels at the various receptors are valid for the E-82 turbines.

We trust that this information is of assistance. If you have any further questions, please do not hesitate to give Kana or myself a call.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Stantec 49 Frederick Street Kitchener ON N2H 6M7

Phone: (519) 585-7416 Cell: (519) 501-2368 Fax: (519) 579-6733 Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Friday, January 24, 2014 3:15 PM

To: Ganesh, Kana; Hung, Timothy; Raetsen, Sarah (ENE) Cc: Raetsen, Sarah (ENE); Powell, Chris; Leggett, Al

Subject: RE: Niagara Region Wind Farm Information request MOE ref file # 1175-972NB9

Hello Kana

He have started review of the subject application and to date have the following preliminary questions.

Question 1: Participating Receptors

Background:

Section 1 of the report notes the following:

The facility is comprised of 80 wind turbine. However, only 77 of the wind turbines will be constructed.

Section 4.2 of the report notes the following:

There are a total of 96 Participating Receptors.

Issue:

Please confirm that the participating Noise Receptors adhere with the definition in Section 1(6) of O. Reg. 359/09. Specifically will all participating receptors have infrastructure located on them?

If this is not the case then some of these participating receptors must be considered as points of reception and the analysis in the report updated to address these points of reception.

Question 2: Re Table 3.1; Sound Power Levels for the E-101

It is noted that the data in Appendix D (Enercon E-101) is for a turbine with a hub height of **99 m**. The proposal (Sept 30, 2013 report) notes the turbine nacelles will be at **124 m** and/or **135 m** height. Please comment on the implication of using the 99 m data in your analysis to represent turbines at **124 m** and/or **135 m** height.

Question 3: Re Table 3.1; Sound Power Levels for the E-82

It is noted that the data in Appendix D (Enercon E-82) is for a turbine with a hub height of **108 m**. The proposal (Sept 30, 2013 report) notes the turbine nacelles will be at **135 m** height. Please comment on the implication of using the 108 m data in your analysis to represent turbines at **135 m** height.

Thank you.

Regards

Denton Miller

Denton Miller | Senior Review Engineer | Team 5 | Environmental Approvals Branch I Ministry of the Environment 2 St. Clair Ave W. 12a Floor Toronto, Ontario, M4V 1L5 | Phone: 416-314-8310 | Denton.Miller@ontario.ca|

From: Ganesh, Kana [mailto:Kana.Ananthaganeshan@stantec.com]

Sent: January 7, 2014 4:18 PM

To: Miller, Denton (ENE); Hung, Timothy

Cc: Raetsen, Sarah (ENE); Powell, Chris; Leggett, Al

Subject: RE: Niagara Region Wind Farm Information request MOE ref file # 1175-972NB9

Thanks for the email Denton and happy New Year to you.

Please find attached the Tables; I have some of them in Word format (readily available) and some in Excel format.

Please let me know word format is acceptable for your purpose.

Best regards

Kana Ganesh, PhD., P.Eng

Sr. Acoustics Noise and Vibration Engineer 300 - 675 Cochrane Drive West Tower Markham ON L3R 0B8 Phone: 905-415-6332

Fax: 905-474-9889 kana.ganesh@stantec.com

Design with community in mind

stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Tuesday, January 07, 2014 3:27 PM

To: Ganesh, Kana; Hung, Timothy Cc: Raetsen, Sarah (ENE); Powell, Chris

Subject: Niagara Region Wind Farm Information request MOE ref file # 1175-972NB9

Hello Kana / Timothy

I am the review engineer assigned to this file. To facilitate my review, please forward excel copies of the following tables in the noise assessment report.

Tables:

2.1	3.3	3.6	4.1
3.1	3.4	3.7	6.2
3.2	3.5	3.8	6.3

F.5 Appendix E

F.6 Barrier Co-ordinates

your file # 160950269 dated September 30, 2013.

Thank you

APPLICATION SUMMARY

Status	New Application	Assigned	
IDS Reference #	1175-972NB9	File #	R- 0018 -13
REA#			
Application Type	New Renewable Energy Approval		
Media	Noise		
Facility Type:			
Client Name	Niagara Region Wind Corporation	Client #	2349-972N8X
Client Aliases			
Site Name	Niagara Region Wind Farm	Site #	9527- 972NA9

Denton Miller | Senior Review Engineer | Team 5 | Environmental Approvals Branch I Ministry of the Environment 2 St. Clair Ave W. 12a Floor Toronto, Ontario, M4V 1L5 | Phone: 416-314-8310 | <u>Denton.Miller@ontario.ca</u>|

Stantec

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Appendix G3 – Sound Power Level Rationale

Concern:

Concerns were raised by the MOE with respect to Enercon's specification of the applicable sound power level for the E-82 and E101 turbines for this Project. Specifically, MOE requested clarification regarding the applicability of different data sheets available from Enercon noting different values for the 95% rated capacity sound power levels for the E-82 and E101 turbines.

Response:

Based on follow-up discussions with Enercon, and discussions with the MOE, a more definitive statement confirming the use of the 104.8 dBA noise data for the E101 turbines proposed for the NRWC Project has been obtained from Enercon. The following documents are attached confirming the use of the appropriate data in the NAR for this Project:

- a. Letter from Enercon entitled Sound Power Level (SPL) documents of the ENERCON Wind Energy Converters (WECs) E101 3.0MW and the E-82 2.3MW for Niagara Region Wind Corporation (NRWC) dated April 15, 2014, and corresponding attachments:
 - 1) Sound Power Level E101 NRWC dated April 15, 2014
 - 2) KÖTTER measurement excerpts dated April 23, 2013 and March 13, 2013
 - 3) Sound Power Level E-82 NRWC dated April 15, 2014
 - 4) KÖTTER measurement excerpt dated February 8, 2010

This letter provides the additional confirmation and greater certainty with respect to the sound power level information for the turbines being proposed for the NRWC Project.

As noted in the attached documents, Enercon is continuously optimizing the mechanical and aerodynamic characteristics of its turbines to reduce the overall SPL. Specific actions include the addition of dampers as well as design modifications, where possible. As such, Enercon has confirmed the validity of using the maximum sound power level 104.8 dBA for the E101turbine and 103.3 dBA for the E-82 turbine for the NRWC facility in accordance with the attached supporting documents. See correspondence dated April 16, 2014 and April 24, 2014 (attached).

NRWC Wind Farm - W-06795

Hassan Shahriar Commercial Manager

Direct Line: (416) 572-8912 Email: hassan.shahriar@enercon.de

April 15, 2014

By email

Niagara Region Wind Corporation 277 Lakeshore Road East, Suite 211 Oakville, ON L6J 6J3

Attn: Mr. Mervin Croghan

Subject: Sound Power Level (SPL) documents of the ENERCON Wind Energy Converters

(WECs) E-101 3.0MW and the E-82 2.3MW for Niagara Region Wind Corporation

(NRWC).

Dear Sir,

It is our understanding that a document titled "Sound Power Level of the E-101, Operational Mode I (Data Sheet)" has been obtained by the Ministry of Environment of Ontario. This document differs from the one ENERCON provided to NRWC for the purpose of its facility. In order to prevent any confusion, please find below clarification on the relevancy of the SPL documents provided to NRWC.

The document "Sound Power Level of the E-101, Operational Mode I (Data Sheet)" contains estimated values, which are based on the theoretical estimation of sound characteristics of turbine technology, as well as modeling of mechanical and aerodynamic properties. ENERCON is continuously optimizing the mechanical and aerodynamic characteristics of its turbines to reduce the overall SPL. Specific actions include the addition of dampers as well as design modifications, where possible. These led to improved sound characteristics which were subsequently measured by KÖTTER Consulting Engineers GmbH & Co. KG, an independent engineering firm.

KÖTTER's measurements for the E-101 and the E-82 form the basis of the SPL documents provided to NRWC. ENERCON confirms the validity of using the maximum SPL of E-101 at 104.8 dBA and of E-82 at 103.3 dBA for the NRWC facility. As such, ENERCON confirms that the attached Sound Power Level documents (dated April 15, 2014) be used for the noise assessment of the NRWC facility.

NRWC Wind Farm - W-06795

Sincerely,

Hassan Shahriar Commercial Manager **ENERCON Canada Inc.**

cc: Darren Croghan, Michael Weidemann, Mark Smith

attached: Sound Power Level E-101 NRWC dated April 15, 2014

KÖTTER measurement excerpts dated April 23, 2013 and March 13, 2013

Sound Power Level E-82 NRWC dated April 15, 2014 KÖTTER measurement excerpt dated February 8, 2010

Page **1 of 2**

Sound Power Level of the ENERCON E-82 2.3 MW

Publisher:

ENERCON Canada Inc. 1000, rue de La Gauchetière ouest Bureau 2310

Montréal, QC, H3B 4W5 +1 514 ENERCON (+1 514 363 7266)

Copyright:

© ENERCON Canada Inc. Any reproduction, distribution and utilisation of this document as well as the communication of its contents to third parties without express authorisation is prohibited. Violators will be held liable for monetary damages. All rights reserved in the event of the grant of a patent, utility model or design.

Content subject to change:

ENERCON Canada Inc. reserves the right to change, improve and expand this document and the subject matter described herein at any time without prior notice.

Author/date:	H.Shahriar /15.06.12	Translator/date:	N.Nnnn / DD.MM.YY
Department:	Sales	Revisor/date:	H.Shahriar / 11.04.14
Approved/date:	M. Weidemann/11.04.14	Reference:	Sound Power Level E-82 NRWC 140415.doc
Released/date:	H.Shahriar /15.04.14		

The following represents the sound power level of the E-82 2.3 MW for the entire operational range of wind speeds in accordance with the measurement technique IEC 61 400 – 11:2002 and A1:2006.

Sound Power Level (SPL) for the E-82 with 2.3 MW rated power

Vs in 10m height	108m	138m
6 m/s	100.6 dB(A)	101.1 dB(A)
7 m/s	102.5 dB(A)	102.8 dB(A)
8 m/s	103.2 dB(A)	103.3 dB(A)
9 m/s	103.3 dB(A)	103.3 dB(A)
10 m/s	103.3 dB(A)	103.3 dB(A)
95% rated power	103.3 dB(A)	103.3 dB(A)

Measurement results of the octave band corresponding to 95% or higher rated power are presented in the table below. ENERCON confirms the measurements values to be representative values of the E-82 2.3 MW noise levels.

		Octave band sound power level in dB(A)								
Frequency (Hz)	63	125	250	500	1,000	2,000	4,000	8,000	dB(A)	
E-82 2.3 MW @ 9m/s	86.6	94.6	94.3	97.3	98.7	93.8	81.5	73.4	103.3	

- 1. The relation between the sound power level and the standardized wind speed Vs in 10 m height as shown above is valid on the premise of a logarithmic wind profile with a roughness length of 0.05m. The relation between the sound power level and the wind speed at hub heights applies for all hub heights. During the sound measurements the wind speeds are derived from the power output and the power curve of the WEC.
- 2. A tonal audibility of $\Delta L_{a,k} \le 2$ dB can be expected over the whole operational range and is valid in the near vicinity of the turbine according to IEC 61 400 -11 ed. 2.

Author/date:	H.Shahriar /15.06.12	Translator/date:	N.Nnnn / DD.MM.YY
Department:	Sales	Revisor/date:	H.Shahriar / 11.04.14
Approved/date:	M. Weidemann/11.04.14	Reference:	Sound Power Level E-82 NRWC 140415.doc
Released/date:	H.Shahriar /15.04.14		

Page 3 of 2

- Sound power level values provided in the table are valid for the Operational Mode I.
 The respective power curve is the calculated power curve of the E-82 E2 dated
 November 2009 (Rev 3.0).
- 4. Due to typical measurement uncertainties, if the sound power level is measured according to the accepted method, the measured values can differ from the values shown in this document in the range of +/- 1dB.

Accepted measurement method:

IEC 61400-11 ed.2 ("Wind turbine generator systems – Part 11: Acoustic noise measurement techniques; Second edition, 2002 – 12").

If the difference between total noise and background noise during a measurement is less than 6 dB, a higher uncertainty must be considered.

5. The sound power level of a wind turbine depends on several factors such as, but not limited to, regular maintenance and day-to-day operation in compliance with the manufacturer's operating instructions.

Summary of Test Report (Measured hub height of 108 m) /1/

Basic sheet "Geräusche" (*Noise*), according to the "Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte" (Technical Guidelines for Wind Energy Converters, Part 1: Determination of sound emission values)

Rev. 18 of February 1, 2008 (Editor: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel)

Extract of Test Report 209244-04.01 IEC

on noise emission of wind energy converter of type E-82 E2											
Genera	al Data	Technical Data (manufacturer's specifications)									
Manufacturer of WEC:	Enercon GmbH	Rated power (generator):	2.300 kW								
Serial number:	82679	Diameter of rotor:	82 m								
Location of WEC (ca.):	26629 Großefehn	Hub height above ground:	108 m								
Geographic co-ordinates:	GK longitude: 34.15.287	Type of tower:	conical tube tower								
	GK latitude: 59.14.701	Power control:	Pitch								
Complementa	ary rotor data	Complementary data of	gear unit and generator								
Complementa (manufacturer's	•	(manufacturer's	gear unit and generator specifications)								
•	specifications)										
(manufacturer's	specifications)	(manufacturer's	s specifications)								
(manufacturer's Manufacturer of rotor blade: Type of rotor blade: Blade setting angle:	s specifications) Enercon	(manufacturer's Manufacturer of gear unit:	not applicable								
(manufacturer's Manufacturer of rotor blade: Type of rotor blade:	Enercon E-82 E2	(manufacturer's Manufacturer of gear unit: Type of gear unit:	not applicable not applicable								

Calculated Performance Chart ENERCON E-82 E2: calculated by ENERCON (Rev. 3.0)

		Calc	ulated Perf	orma	ance Chart	ENERC	ON E-82 E2;	calculated by	y ENE	RCO	N (Rev. 3.0))			
			Reference Point standardized wind speed in							Nois	e emiss	ion	٠.		
			1	0 m	height	ed in	true elec	trical powe	er	pa	rameter	s	Obs	erva	itions
				5 m			57	9 kW		9	6.4 dB(A)			
				6 ms ⁻¹			1,0	1,089 kW		100.6 dB(A)					
sound power	lovoll			7 ms ⁻¹			1,6	1,612 kW		10	2.5 dB(A	A)			
souria power	ievei L _W	8 sever Lwa,p			าร ⁻¹			32 kW		10	3.2 dB(A	A)			
	g			9 m	าร ⁻¹		2,2	55 kW		10	3.3 dB(A	A)			
			1	0 m	าร ⁻¹		2,3	00 kW		10	2.9 dB(A	A)			
				5 m	าร ^{-า}			kW			- 2.7 dB				
				6 m				kW		<	<- 3.0 dB				
tonal audibilit	hr Al			7 m	າຣ ⁻¹			kW			- 1.8 dB				
torial audibili	ly ∆∟ _{a,k}		8 ms ⁻¹					kW			- 0.7 dB				
				9 m	าร ⁻¹			kW			0.2 dB				
			1	าร ⁻¹			kW			- 0.4 dB					
					ms ⁻¹ kW				0 dB						
				6 m				kW		0 dB					
impulse adjus		r		7 m				kW		0 dB					
small distance	es K _{IN}			8 m				kW		0 dB					
				9 m				kW		0 dB					
			1	0 m	ns ⁻¹ kW					0 dB					
Third-octave	band sou	nd pov	ver level		for v _s = 5	ms ⁻¹ in	dB(A)								
Frequency	50	63	80		100	125	160	200	25		315	400	50		630
$L_{WA,P}$	74.1	76.5			85.6	82.2		81.9	83		85.6	85.1	85		87.6
Frequency	800	1,00			1,600	2,000		3,150	4,0		5,000	6,300	,		10,000
$L_{WA,P}$	86.9	86.2	2 84.8	3	82.4	78.8	75.3	70.6	65	.5	60.3*	60.3	63	3.0	70.3
Octave band	•	wer le			for $v_s = 5$	ms ⁻¹ in									
Frequency	63		125		250		500	1,000			2,000	4,0			8,000
$L_{WA,P}$	82.3		88.3		88.8		91.0	90.8			84.5	72	1		71.4
Third-octave	band sou	sound power level for $v_s = 6 \text{ ms}^{-1} \text{ in}$					dB(A)								
Frequency	50	63				160	200	25		315	400	50		630	
$L_{WA,P}$	78.2**	79.1		_	85.2	87.4		85.0	87	_	88.7	88.5	_		93.2
Frequency	800	1,00			1,600	2,000		3,150	4,0		5,000	6,300			10,000
$L_{WA,P}$	91.7	91.5	89.9	J	87.1	83.0	79.4	74.4	69	0.0	63.5	64.4	67	′.4	74.3

Octave band	sound po	wer leve	el	for v _s = 6	6 ms ⁻¹ i	n dB(A)						
Frequency	63		125	250)	500	1.000	0	2.000	4.000)	8.000
L _{WA,P}	84.9	*	90.6	92.0	0	95.7	95.9	9	89.0	75.8	3	75.4
Third-octave	band sou	ınd powe	er level	for v _s = 7	ms ⁻¹ in	dB(A)	•	<u> </u>				
Frequency	50	63	80	100	125	160	200	250	315	400	50	0 630
L _{WA,P}	78.6**	79.8	82.7	84.8	90.	8 86.2	86.0	89.7	7 91.0	92.5	91.	7 93.9
Frequency	800	1,000	1,250	1,600	2,00	0 2,500	3,150	4,00	0 5,000	6,300	8,00	00 10,000
$L_{WA,P}$	93.4	93.3	91.8	89.2	85.	8 81.9	77.0	72.2	2 66.1	65.3	66.	.8 72.8
Octave band	sound po	wer leve	el	for v _s = 7	ms ⁻¹ in	dB(A)						
Frequency	63		125	250		500	1,000	0	2,000	4,000)	8,000
$L_{WA,P}$	85.5*	ł .	92.8	94.2		97.6	97.7	7	91.4	78.5	,	74.4
Third-octave	band sou	ınd powe	er level	for $v_s = 8$	ms ⁻¹ in	dB(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	50	0 630
L _{WA.P}	77.4*	80.4	83.1	84.9	91.	2 86.6	86.3	90.4	91.4	92.9	92.	1* 94.8
Frequency	800	1,000	1,250	1,600	2,00	0 2,500	3,150	4,00		6,300	8,00	00 10,000
$L_{WA,P}$	94.2	94.1	92.6	90.1	86.	7 82.7	77.8	73.3	67.7	65.8	66.	6 71.4
Octave band	sound po	wer leve	el	for v _s = 8	ms ⁻¹ in	dB(A)						
Frequency	63		125	250		500	1,000	0	2,000	4,000)	8,000
L _{WA,P}	85.6		93.2	94.6	i	98.2	98.5	5	92.2	79.4		73.4
Third-octave	band sou	ınd powe	er level	for v _s = 9	ms ⁻¹ ii	n dB(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	50	0 630
L _{WA,P}	78.5	81.4	83.9	85.7	92.	6 88.2	86.4	90.2	2 90.7	91.8	91.	5* 93.9
Frequency	800	1,000	1,250	1,600	2,00	0 2,500	3,150	4,00	0 5,000	6,300	8,00	00 10,000
$L_{\text{WA},P}$	94.0	94.4	93.4	91.5	88.	4 84.6	79.9	75.4	4 69.3	65.5*	66.	4 71.5
Octave band	sound po	wer leve	el	for $v_s = 9$	ms ⁻¹ in	dB(A)						
Frequency	63		125	250		500	1,000	0	2,000	4,000)	8,000
$L_{WA,P}$	86.6		94.6	94.3		97.3*	98.7	7	93.8	81.5	;	73.4
Third-octave	band sou	ınd powe	er level	for v _s = 1	0 ms ⁻¹	in dB(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	50	0 630
L _{WA,P}	78.8	81.7	84.5	86.3	92.	4 88.5	86.4	89.8	3 90.0*	91.2	90.	9* 92.7*
Frequency	800	1,000	1,250	1,600	2,00	0 2,500	3,150	4,00	0 5,000	6,300	8,00	00 10,000
$L_{WA,P}$	93.3	93.9	93.3	91.5	88.	8 85.2	80.7	76.	71.9	70.4	68.	.5 71.8
Octave band	sound po	wer leve	el	for v _s = 10) ms ⁻¹ i	n dB(A)						
-	00		125	250		500	1,000	n	2,000	4,000	1	8,000
Frequency	63		120	250		300	1,000	U	2,000	4,000	,	0,000

This summary of the test report is valid only in combination with the certification of the manufacturer of 03/05/2010.

These specifications do not replace the test report mentioned above (particularly for noise immission predictions).

Observations:

- * Difference between working and background noise < 6 dB, correction by 1.3 dB
- ** Difference between working and background noise < 3 dB, values shall not be presented

/1/ Wind turbine generator systems – Part 11: Acoustic noise; measurement techniques (IEC 61400-11:2002 and A1:2006); German version DIN EN 61400-11:2007

Measured by:

KÖTTER Consulting Engineers

- Rheine -

Date: 08/02/2010

O. Bel jign Winduis i. V. Dipl.-Ing. O. Bunk i. A. Dipl.-Ing. J. Weinheimer

Page **1 of 2**

Sound Power Level of the ENERCON E-101 3.0 MW

Publisher:

ENERCON Canada Inc.

1000, rue de La Gauchetière ouest Bureau 2310 Montréal, QC, H3B 4W5 +1 514 ENERCON (+1 514 363 7266)

Copyright:

© ENERCON Canada Inc. Any reproduction, distribution and utilisation of this document as well as the communication of its contents to third parties without express authorisation is prohibited. Violators will be held liable for monetary damages. All rights reserved in the event of the grant of a patent, utility model or design.

Content subject to change:

ENERCON Canada Inc. reserves the right to change, improve and expand this document and the subject matter described herein at any time without prior notice.

Author/date:	H.Shahriar /15.06.12	Translator/date:	N.Nnnn / DD.MM.YY
Department:	Sales	Revisor/date:	H.Shahriar / 11.04.14
Approved/date:	M. Weidemann/11.04.14	Reference:	Sound Power Level E-101 NRWC 140415.doc
Released/date:	H.Shahriar /15.04.14		1404 15.doc

Page **2 of 2**

The following represents the sound power level of the E-101 3.0 MW for the entire operational range of wind speeds in accordance with the measurement technique IEC 61 400 – 11:2002 and A1:2006.

Sound Power Level (SPL) for the E-101 with 3.0 MW rated power

Vs in 10m height	99m	124m	135m
6 m/s	103.6 dB(A)	103.6 dB(A)	103.8 dB(A)
7 m/s	104.3 dB(A)	104.3 dB(A)	104.5 dB(A)
8 m/s	104.8 dB(A)	104.8 dB(A)	104.8 dB(A)
9 m/s	104.8 dB(A)	104.8 dB(A)	104.8 dB(A)
10 m/s	104.8 dB(A)	104.8 dB(A)	104.8 dB(A)
95% rated power	104.8 dB(A)	104.8 dB(A)	104.8 dB(A)

Measurement results of the octave band corresponding to 95% or higher rated power are presented in the table below. ENERCON confirms the measurements values to be representative values of the E-101 3.0 MW noise levels.

		Octave band sound power level in dB(A)								
Frequency (Hz)	63	3 125 250 500 1,000 2,000 4,000 8,000 dB(A)								
E-101 3.0 MW @ 8.3m/s	86.3	91.6	98.6	100.8	98.3	92.8	85.9	73.3	104.8	

- 1. The relation between the sound power level and the standardized wind speed Vs in 10 m height as shown above is valid on the premise of a logarithmic wind profile with a roughness length of 0.05m. The relation between the sound power level and the wind speed at hub heights applies for all hub heights. During the sound measurements the wind speeds are derived from the power output and the power curve of the WEC.
- 2. A tonal audibility of $\Delta L_{a,k} \le 2$ dB can be expected over the whole operational range and is valid in the near vicinity of the turbine according to IEC 61 400 -11 ed. 2.

Author/date:	H.Shahriar /15.06.12	Translator/date:	N.Nnnn / DD.MM.YY
Department:	Sales	Revisor/date:	H.Shahriar / 11.04.14
Approved/date:	M. Weidemann/11.04.14	Reference:	Sound Power Level E-101 NRWC 140415.doc
Released/date:	H.Shahriar /15.04.14		1404 15.doc

Page 3 of 2

- 3. Sound power level values provided in the table are valid for the Operational Mode I. The respective power curve is the calculated power curve of the E-101 dated October 2009 (Rev 2.0).
- 4. Due to typical measurement uncertainties, if the sound power level is measured according to the accepted method, the measured values can differ from the values shown in this document in the range of +/- 1dB.

Accepted measurement method:

IEC 61400-11 ed.2 ("Wind turbine generator systems - Part 11: Acoustic noise measurement techniques; Second edition, 2002 – 12").

If the difference between total noise and background noise during a measurement is less than 6 dB, a higher uncertainty must be considered.

5. The sound power level of a wind turbine depends on several factors such as, but not limited to, regular maintenance and day-to-day operation in compliance with the manufacturer's operating instructions.

Summary of Test Report (Measured hub height of 99 m) /1/

Master Data Sheet "Geräusche" (Noise), in accordance with

"Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte" (Technical Guidelines for Wind Turbine Generators, Part 1: Determination of sound emission values)

Rev. 18 of February 1, 2008 (Editor: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel)

Extract of Test Report 213122-02.01 IEC

on noise emission of wind turbine generator of type E-101

General Data Technical Data (manufacturer's specifications) Manufacturer of WTG: Enercon GmbH Rated power (generator): 3,050 (3,250) kW Serial number: 1010002 Diameter of rotor: 101 m Location of WTG (approx.): 49733 Haren Hub height above ground: 99 m Geographic co-ordinates: GK longitude: 25.76.214 Type of tower: conical tubular concrete GK latitude: 58.59.856 Power control: Pitch Complementary rotor data Complementary data of gear unit and generator (manufacturer's specifications) (manufacturer's specifications) Manufacturer of rotor blade: Enercon Manufacturer of gear unit: not applicable Type of rotor blade: E-101-1 Type of gear unit: not applicable Blade setting angle: variable Manufacturer of generator: Enercon Number of rotor blades: 3 Type of generator: G-101/30-G2 Rotor speed range: 5 to 14.7 rpm. (mode OM I)

Rated speed of generator: 5 to 14.7 rpm. (mode OM I)

	Calculat	ed Pei	тогта	nce Chart:			27 10 10 10	3 MW OM I	; calculate	d by ENER	CON (Rev.	1.0)	
						rence P	oint		No	ise emis	sion	May no	F2
			st		ed wind sp ght of 10 r		true elec	ctrical pow		paramete	0.50155	Observations	
					ms ⁻¹		1,4	14 kW	1	03.6 dB(A)		
AL TANK		_		7	ms ⁻¹		2,0	77 kW	1	04.3 dB(A)		
sound power	er level Ly	VA,P		8	ms ⁻¹		2,7	51 kW	1	04.8 dB(A)		
				9	ms ⁻¹		2,9	87 kW		04.6 dB((1	1
				10	ms ⁻¹		100	50 kW			7	(2	
				6	ms ⁻¹		-	14 kW		- 1.5 dB		12	-/
					ms ⁻¹			77 kW		0 dB			
tonal audibi	nal audibility ∆L _{a,k}			8	ms ⁻¹			51 kW		0 dB			
				9	ms ⁻¹			87 kW		0 dB		/4	į.
				10	ms ⁻¹		-	50 kW		UUB		(1	
					ms ⁻¹			14 kW	-	0 dB	-	(2	.)
					ms ⁻¹								
impulse ad				0	ms ⁻¹		2,077 kW 2,751 kW 2,987 kW			0 dB			
immediate v	icinity Kin	1		0	ms ⁻¹					0 dB			
				10	ns 1					0 dB		(1)	
Thind - 4	Lance Co. C.		_	101	ms ⁻¹			50 kW				(2)
Third-octave						6 ms ⁻¹ in c							
Frequency	50	_	3	80	100	125	160	200	250	315	400	500	630
LWAP	78.3	81	-	83.0**	84.2	89.6	85.7*	89.2	92.7	94.1	94.6	95.1	94.9
Frequency	93.5		000	1,250	1,600	2,000	2,500	3,150	4,000	5,000	6,300	8,000	10,000
LWAP			.6	90.0	89.0	85.4			79.3	79.3 74.8		64.7**	65.3**
Octave band		wer		125		ms in d							
Frequency	63			125	250		500	1,000)	2,000	4,00		8,000
LWAP	85.6*			91.9	97.2		99.6	96.7		91.5	84.6	6	70.3*
Third-octave						ms ⁻¹ in dB							
Frequency	50	63		80	100	125	160	200	250	315	400	500	630
LWAP	78.9	83.		84.0	84.9	88.2	86.4*	89.6	94.7	94.9	95.4	95.8	95.5
Frequency	800	1,00		1,250	1,600	2,000	2,500	3,150	4,000	5,000	6,300	8,000	10,000
L _{WA,P}	94.0	92.		90.4	89.3	86.1	84.7	82.9	79.9	74.4*	68.4*	64.6**	62.7**
Octave band		werl				ms ⁻¹ in dB							
Frequency	63		_	25	250		500 1,000					4,000 8,000	
LWAP	87.3		9	1.5	98.4		100.3	97.1		91.9	85.0		71.5**

Third-octave	band so	and powe	er level	for $v_s = 8$	ms ⁻¹ in dE	3(A)						
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P}	82.1	82.8	84.4	88.4	86.8	90.1	94.8	95.0	95.6	96.3	96.2	82.1
Frequency	800	1,000	1,250	1,600	2,000	2,500	3,150	4.000	5,000	6.300	8.000	10.000
LWAP	95.0	93.3	91.5	90.4	86.7	85.4	83.7	80.9	75.9	69.7*	67.1**	65.5**
Octave band	sound po	ower leve		for $v_s = 8$	ms ⁻¹ in dE	3(A)					-	1 00.0
Frequency	63		125	250		500	1.000		2,000	4,000)	8.000
L _{WA,P}	86.3		91.6	98.6		100.8	98.3		92.8	86.0		73.3**
Third-octave	band sou	ind powe	r level	for $v_s = 9$	ms ⁻¹ in d	B(A)					_	
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P}	78.6	81.9	82.4*	83.9	87.8	85.9*	88.6	93.8	94.2	95.1	96.0	96.3
Frequency	800	1,000	1,250	1,600	2,000	2,500	3,150	4.000	5,000	6,300	8,000	10,000
LWAP	95.4	93.8	92.3	91.0	87.4	86.0	84.1	81.1	76.7	71.7	68.4	66.8*
Octave band	sound po	wer leve		for v _s = 9	ms ⁻¹ in dE	3(A)					55.1	00.0
Frequency	63	W 12	125	250		500	1,000)	2,000	4,000		8,000
LWAP	86.0		90.8	97.6		100.6	98.8		93.5	86.4		74.2

This summary of the test report is valid only in combination with the manufacturer's certificate dated 12/03/2013.

These specifications do not replace the test report mentioned above (particularly for noise immission predictions).

Observations:

- (1) Maximum value of standardized wind speed during the WTG-operation measurement $v_s = 8.9 \text{ m/s}$
- Due to weather conditions, no data available during WTG operation
- Difference between working and background noise < 6 dB, correction by 1.3 dB
- Difference between working and background noise < 3 dB, values shall not be presented

/1/ Wind turbine generator systems - Part 11: Acoustic noise; measurement techniques (IEC 61400-11:2002 and A1:2006); German version DIN EN 61400-11:2007

Measured by:

KÖTTER Consulting Engineers

- Rheine -

Date: 23/04/2013

Dipl.-Ing. Oliver Bunk Matthias Humpohl, B.Sc.

Bonifatiusstraße 400 + 48432 Rheine

Tel. 0.59 71 97 100 Fex 0.59 71 - 97 10.43

Vorläufiger Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01 Februar 2008 (Herausgeber Fordergesellschaft Windenergie e V. Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht 213121-01.01

zur Schallemission einer Windenergieanlage vom Typ E-101 Technische Daten (Herstellerangaben) Allgemeine Angaben Anlagenhersteller Enercon GmbH Nennleistung (Generator): 3.0 (3.25) MW Seriennummer: 1010002 Rotordurchmesser: 101 m WEA-Standort (ca.): 49733 Haren Nabenhöhe über Grund: 99 m RW: 25.76.214 Standortkoordinaten: Turmbauart: Beton Leistungsregelung: HW: 58.59.856 Pitch Ergänzende Daten zum Rotor Erganzende Daten zu Getriebe und Generator (Herstellerangaben) (Herstellerangaben) Rotorblatthersteller entfällt Enercon Getriebehersteller Typenbezeichnung Blatt: E-101-1 entfällt Typenbezeichnung Getriebe: Blatteinstellwinkel: variabel Generatorhersteller Enercon Rotorblattanzahl: Typenbezeichnung Generator: G-101/30-G2 Rotordrehzahlbereich: 5 - 14,7 U/min 14,7 U/min Generatomenndrehzahl:

Leistungskurve: Leistungskennlinie E101 3 MW OM I (berechnet) der Enercon GmbH zur E-101 vom 05.07.2012

	Referenzpur	nkt	Schallemissions-	Establish but
	Normierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung	Parameter	Bemerkungen
	6 ms ⁻¹	1.414 kW	103,6 dB(A)	
	7 ms ⁻¹	2.077 kW	104,3 dB(A)	
Schallleistungs-Pegel	8 ms ⁻¹	2.751 kW	104,7 dB(A)	
LWAP	9 ms ⁻¹	2.987 kW	104,6 dB(A)	
	10 ms ⁻¹	3.050 kW	dB(A)	(2)
	8,3 ms ⁻¹	2.850 kW	104,8 dB(A)	(1)
	6 ms ⁻⁷	1.414 kW	0 dB bei 116 Hz	
	7 ms ⁻¹	2.077 kW	0 dB	
Tonzuschlag für den	8 ms ⁻¹	2.751 kW	0 dB	
Nahbereich K _{TN}	9 ms ⁻¹	2.987 kW	0 dB	
7-12-13-13-13-14-14-14-14-14-14-14-14-14-14-14-14-14-	10 ms ⁻¹	3.050 kW	dB	(2)
	8,3 ms ⁻¹	2.850 kW	0 dB	(1)
	6 ms ⁻¹	1.414 kW	0 dB	
	7 ms ⁻¹	2.077 kW	0 dB	
Impulszuschlag für den	8 ms ⁻¹	2.751 kW	0 dB	
Nahbereich K _{IN}	9 ms ⁻¹	2.987 kW	0 dB	
	10 ms ⁻¹	3.050 kW	dB	(2)
	8,3 ms ⁻¹	2.850 kW	0 dB	(1)
Terz-Schallleistungspegel		prechend dem maxim	alen Schallleistungspegel	
	80 100 125	160 200	250 315 400	500 630

Terz-Schallleistungspegel			für v _e = 8,3 ms ⁻¹ in dB(A) entsprechend dem maximalen Schallleistungspegel									
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWAP,mex	78,8	82,1	82,7	84.4	88,4	86,7	90,0	94,8	95,0	95,6	96,3	96,2
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3,150	4.000	5.000	6.300	8.000	10.000
LWA, P. max	95,0	93,3	91,5	90.4	86,6	85.4	83,7	80,8	75,8	69.7*	67,1**	65,5**

-WA,P,max	55,0	55,5	01,0	50.4	00,0	00.4	00,7	00,0	10,0	00.1	UI,	05,5
Oktav-Schal	llleistungs	pegel	für $v_s = 8$	3 ms ⁻¹ in d	B(A) entspr	echend	dem maxir	nalen Scl	hallleistun	gspegel		
Frequenz	63		125	250	5	00	1.000		2.000	4.000		8.000
LWAP-max	86,3		91,6	98,6	10	8,00	98,3		92.8	85,9		73,3**

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 13.03.2013.

Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bernerkungen: (1) Die normierte Windgeschwindigkeit von v_s = 8,3 ms⁻¹ entspricht 95 % der Nennleistung.
(2) Witterungsbedingt keine Daten vorhanden

Abstand zwischen Anlagengeräusch und Fremdgeräusch < 6 dB, Pegelkorrektur um 1,3 dB

** Abstand zwischen Anlagengeräusch und Fremdgeräusch < 3 dB, keine Pegelkorrektur

Gemessen durch:

KÖTTER Consulting Engineers GmbH & Co...KG

CONSULTING ENGINEERS

Datum: 13.01.20.3 i. V. Dipl.-Ing. Oliver Bunk i. A. Matthias Humpohl, B. Sc.

Bonifatiusstraße 400 - 48432 Rheine Tel 0 50 71 - 07 10 0 - 50 v 0 50 71 - 07 10 43

Powell, Chris

From: Miller, Denton (ENE) < Denton.Miller@ontario.ca>

Sent: Thursday, April 24, 2014 12:03 PM **To:** Powell, Chris; Raetsen, Sarah (ENE)

Cc: Darren Croghan; Merv Croghan; Shiloh Berriman (sberriman@nrwc.ca); Leggett, Al;

Ganesh, Kana; Hung, Timothy

Subject: RE: NRWC Info Request - 2e , 8 and 9 MOE ref file # 1175-972NB9

Chris

Yes, the information provided previously has addressed our concerns.

Thank you

Regards Denton Miller 416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: April 24, 2014 12:00 PM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE)

Cc: Darren Croghan; Merv Croghan; Shiloh Berriman (sberriman@nrwc.ca); Leggett, Al; Ganesh, Kana; Hung, Timothy

Subject: RE: NRWC Info Request - 2e , 8 and 9 MOE ref file # 1175-972NB9

Denton,

Thank you for the comments and we trust the information we provided satisfies your concerns. We will work to get the report updated as soon as possible to provide to you on or before May 9, 2014.

Sincerely,

Chris

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, April 24, 2014 11:56 AM **To:** Powell, Chris; Raetsen, Sarah (ENE)

Cc: Darren Croghan; Merv Croghan; Shiloh Berriman (sberriman@nrwc.ca); Leggett, Al; Ganesh, Kana; Hung, Timothy

Subject: RE: NRWC Info Request - 2e , 8 and 9 MOE ref file # 1175-972NB9

Hello Chris

Thank you for your response.

Moving forward please update the noise report as noted below:

1. Info request 2: Sound Power Levels

➤ Include the turbine data sheets provided by Enercon, that address the E-101 and E-82 turbines specifications (April 16,2014 email)

2. Add an appendix to the report that summarize:

i) Info request 3: Eric Gillespie Letters

summarize the efforts made to date to address the concerns raised by Eric Gillespie (include your Jan 31, 2014 letter)

ii) Info request 4: Receptor 1750

- > summarize the issues associated with receptor 1750. Also note the resolution. (your Feb 12, 2014 e-mail)
- Also update the noise report accordingly (vacant lot changed to existing lot)

iii) Info request 5: Receptor 3583

➤ summarize the issues associated with receptor 3583. (your Feb 13, 2014 and April 17, 2014 e-mails)

iv) Info request 6: Receptors 735,794, 1762, 582, 674, 148

- summarize the issues associated with the receptors identified above (your Mar 6, 2014 e-mail)
- ➤ Also update the noise report accordingly (vacant lots changed to existing lot)
- ➤ Include the new point of reception, that is in close proximity to O_1958, in the POR Results Summary Table (Appendix C)

v) Info request 7: Alleged receptor between receptors 1481 and 1598

> summarize the issues associated with the receptors identified above (your Mar 13, 2014 e-mail)

vi) Info request 8: Munich Higher Regional Court's decision

> summarize the issues and Enercon's opinion associated with the Munich Higher Regional Court's decision (your April 16, 2014 e-mail)

vii) Info request 9: Rosa Flora Turbine

> summarize the issues associated with the assessment of the turbine and provide the updated Cadna files (your April 16, 2014 e-mail)

viii) Info request 2: Sound Power Levels

- > summarize the issues associated with the different sound power level datasheets for the subject turbines (your April 16, 2014 e-mail)
- 3. Please submit a signed hard copy of the report and a PDF version of the report. (Please also provide a word document with the track changes noted for the first seven sections of the report.)
- 4. Please submit the updated report by May 9, 2014.

Regards Denton Miller 416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: April 16, 2014 9:46 AM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE)

Cc: Darren Croghan; Merv Croghan; Shiloh Berriman (sberriman@nrwc.ca); Leggett, Al; Ganesh, Kana; Hung, Timothy;

Hassan.Shahriar@enercon.de

Subject: FW: Niagara Region Wind Farm Info Request - 2e , 8 and 9 MOE ref file # 1175-972NB9

Importance: High

Denton,

In response to your email dated April 3, 2014, and further to our conference calls over this past week, we provide the following information to address your comments:

1. Info Request 2e - Sound Power Levels of the Subject Turbines

Based on follow-up discussions with Enercon, a more definitive statement confirming the use of the 104.8 dBA noise data for the E101 turbines proposed for the NRWC Project has been obtained from Enercon. Attached to this email are the following documents confirming the use of the appropriate data in the noise assessment report for this Project:

- a. Letter from Enercon entitled Sound Power Level (SPL) documents of the ENERCON Wind Energy Converters (WECs) E-101 3.0MW and the E-82 2.3MW for Niagara Region Wind Corporation (NRWC) dated April 15, 2014, and corresponding attachments.
 - 1) Sound Power Level E-101 NRWC dated April 15, 2014
 - 2) KÖTTER measurement excerpts dated April 23, 2013 and March 13, 2013
 - 3) Sound Power Level E-82 NRWC dated April 15, 2014
 - 4) KÖTTER measurement excerpt dated February 8, 2010

This letter provides the additional confirmation requested in your last email and greater certainty with respect to the sound power level information for the turbines being proposed for the NRWC Project.

2. Info Request 8 – Munich Higher Regional Court's Decision pertinent to impulsive sound from Enercon E-82 wind turbines

The following comments have been provided by Enercon in response to MOE's request for information on this issue:

The article referenced is in regard to a claim and subsequent ruling which has been made against ENERCON regarding the impulsivity of E-82 turbines in one of its wind parks near Munich, Germany.

ENERCON is in full disagreement with the ruling and are launching a full appeal against the region. In response, as per the official comments from ENERCON GmbH made on this issue.

"for us, this ruling is completely incomprehensible", says Felix Rehwald, Spokesperson for Europe's largest wind turbine manufacturer Enercon.

He continues to comment that ENERCON manufactures, sells and guarantees its turbines worldwide against tonality (in accordance with the IEC standards) and furthermore that Enercon's own specialists in sound power

have yet to yield any measurements which would indicate impulsivity of the turbines and as such, Enercon is launching counter-proceedings in the way of an appeal against the ruling.

The court case in Germany is not related to the NRWC project from a technical and environmental permitting perspective.

3. Info Request 9 – Cadna files for Existing Rosa Flora Turbine

In regards to the questions raised pertaining to the Cadna files, we will circulate the correct Cadna files to the MOE under a separate email, which will be available via an FTP site for your review. The Cadna file will illustrate the correct sound power level (103.5 dBA) for the Rosa Flora Turbine, as it was used in the noise model to generate the results in the Noise Assessment Report dated September 2013.

The Cadna file previously provided on March 17, 2014 identifying a sound power level for this turbine of 101 dBA (correction factor of -2.5 dBA) was not used in the modelling exercise for this Project.

The Rosa Flora turbine is a 0.65 MW turbine located approximately 3,500 m from the nearest NRWC turbine. As per the Noise Assessment Report, the maximum sound power level for this turbine used in the model was 103.5 dBA (Section 3.3, page 3.9), which was rounded to 104 in Table 3.8. This is further confirmed in the sample calculation and Cadna/A input/outputs table provided in Appendix E and in the adjusted emission level for the Rosa Flora turbine identified in Table F1 of Appendix F of the Noise Assessment Report (Stantec, September 2014).

Based on the above, we trust that the above information is sufficient to address MOE's concerns as expressed in your email dated April 3, 2014.

If you have any questions, please do not hesitate to call.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Stantec

49 Frederick Street Kitchener ON N2H 6M7

Phone: (519) 585-7416 Cell: (519) 501-2368 Fax: (519) 579-6733 Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, April 03, 2014 1:40 PM

To: Kossowski, Julia

Cc: Raetsen, Sarah (ENE); Powell, Chris; Ganesh, Kana; Leggett, Al; darrenc@nrwc.ca; Shiloh Berriman;

mervcroghan@nrwc.ca; Hung, Timothy

Subject: FW: Niagara Region Wind Farm Info Request - 2e , 8 and 9 MOE ref file # 1175-972NB9

Hi Chris / Julia

Below are:

- 1. Additional comments to info request 2 (Sound Power Levels of the subject turbines),
- 2. Two new information requests (8 & 9), and
- 3. A summary of the information requests to date (attached).

1. Additional comments to Info Request 2

With respect to Enercon's attached document, I still have concerns with their specification of the applicable sound power level {RE: Section 6.2.2. of Noise Guidelines for Wind Farms}.

Specifically the use of the word <u>suggests</u> is problematic. (reference copied below).

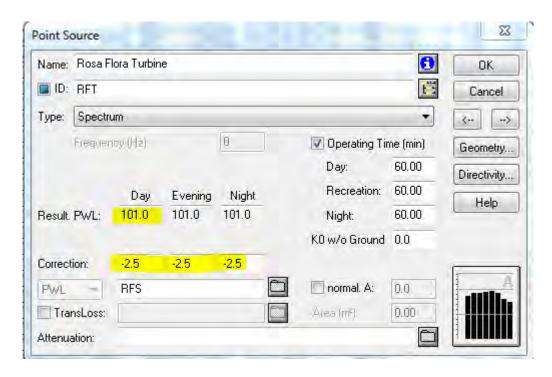
The 104.8 dBA as presented in the Kotter document dated April 23, 2013 coincides with the Sound Power Level guarantee (95% rated power or higher) provided by ENERCON to the Niagara Region Wind Corporation. As such, ENERCON suggests that this document is more applicable to the Niagara Region Wind Corporation facility as opposed to the estimated 106 dBA presented in the ENERCON document.

Consequently, in the absence of a definitive statement from Enercon , I will be contacting you next week to discuss how my review will address this issue.

2. Info Request 8

Please ask Enercon to comment on the following court decision identified via an EBR comment:

The Munich Higher Regional Court's decision pertinent to impulsive sound from Enercon E-82 wind turbines in a wind farm located in Rennertshofen in the district of Neuburg-Schrobenhausen. Judgment OLG München 14.08.2012


Specifically;

- 1. What was the issue?
- 2. What was the outcome? and
- 3. How is this issue related to the turbines proposed in the NRWC

Please provide comments by April 17, 2014.

3. Info Request 9:

The Cadna files note the following sound power level (101.0 dBA) for Rosa Flora Turbine:

The Noise Report notes the following sound power level (104 dBA) for the same turbine.

Table 3.8	Assessed Noise Sources within 5 km	Associated with A	djacent or Pr	oposed Wind F	arms
Source ID	Source Description	Sound Power Level [dBA]	UTM Coordinates		
		[UDA]	X [m]	Y [m]	Z [m]
RF	Rosa Flora Turbine	104	615270	4756417	75

Please comment on the oversight between both sources of data, and the potential impact on the calculated sound pressure levels.

Please provide comments by April 17, 2014.

Regards
Denton Miller
416-314-8310

From: Kossowski, Julia [mailto:Julia.Kossowski@stantec.com]

Sent: March 25, 2014 4:35 PM **To:** Miller, Denton (ENE)

Cc: Raetsen, Sarah (ENE); Powell, Chris; Ganesh, Kana; Leggett, Al; darrenc@nrwc.ca; Shiloh Berriman

(sberriman@nrwc.ca); mervcroghan@nrwc.ca; Hung, Timothy

Subject: FW: Niagara Region Wind Farm Info Request -2e MOE ref file # 1175-972NB9

Hello Denton,

On behalf of Chris Powell and NRWC, please find attached ENERCON's request to your email below dated March 17, 2014.

Please contact us if you require additional information.

Kind Regards, Julia

Julia Kossowski, P. Eng.

Project Manager - Power Stantec 49 Frederick Street Kitchener ON N2H 6M7 Ph: (519) 569-4338 Fx: (519) 579-4239 Cell: (226) 989-5259 julia.kossowski@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Monday, March 17, 2014 02:37 PM

To: Powell, Chris; Raetsen, Sarah (ENE) < Sarah.Raetsen@ontario.ca; Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca' <<u>darrenc@nrwc.ca</u>>; 'sberriman@nrwc.ca' <<u>sberriman@nrwc.ca</u>>;

'mervcroghan@nrwc.ca' < mervcroghan@nrwc.ca >

Subject: RE: Niagara Region Wind Farm Info Request -2e MOE ref file # 1175-972NB9

Thank you for your response Chris.

Summary:

ENERCON considers the measurements values to be <u>satisfactory representative</u> values of the E-101 3,050 kW and E-82 E2 2,300 kW noise levels

	Octave band sound power level in dB(A)								
Frequency (Hz)	63	125	250	500	1,000	2,000	4,000	8,000	
E-101 3,050 kW @ 8.3m/s	86.3	91.6	98.6	100.8	98.3	92.8	85.9	73.3	
E-82 E2 2,300 kW @ 9 m/s	86.6	94.6	94.3	97.3	98.7	93.8	81.5	73.4	

ISSUE:

Unfortunately the response from Enercon (<u>satisfactory representative</u>) is not definitive enough for our review purposes. It is requested that Enercon explain why they have published at least two different data sheets for the

same equipment (E-101), that have different values for the 95% rated capacity sound power levels (106 dBA and 104.8 dBA)?

It is also requested that Enercon explain why the above sound power levels for the E-101 are applicable to the Niagara Region Wind Corporation facility as opposed to the 106 dBA data that was referenced in a previous e-mail?

Please provide a response by March 25, 2014.

Regards Denton Miller 416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: March 17, 2014 1:25 PM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca'

Subject: RE: Niagara Region Wind Farm Info Request -2d MOE ref file # 1175-972NB9

Denton,

The attached information has been provided by Enercon in response to your email dated March 12, 2014. The values contained in the attachment provide the A-weighted values for the E-101 and E-82 turbines to 95% rated capacity, while the values included in Table 3.2 of the Noise Assessment Report (as attached to your email) are linear weighted values. The A-weighted values provided by Enercon in the attached table are consistent with the information provided previously by Enercon to Stantec for use in the noise model. These values were converted to linear weighted values following standard conversion methods and incorporated accordingly into the noise model and Noise Assessment Report.

In regards to your second comment, the requested Cadna-A file has been provided under a separate email earlier today for your review.

We trust that this information will be sufficient. If you have any further questions, please do not hesitate to ask.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Associate, Environmental Services Stantec Consulting Ltd.

Office: (519) 585-7416 Cell: (519) 501-2368 chris.powell@stantec.com

From: Miller, Denton (ENE) [Denton.Miller@ontario.ca]

Sent: March 12, 2014 12:22 PM

To: Powell, Chris; Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca'

Subject: RE: Niagara Region Wind Farm Info Request -2d MOE ref file # 1175-972NB9

Thank you for your response Chris

Summary:

In accordance with Section 6.2.2 of the Noise Guidelines for Wind Farms your firm was requested to provide the sound power levels, frequency spectra in octave bands (63 to 8000 Hz), and tonality at integer wind speeds from 6 to 10 m/s for the subject wind turbines. (E-82 & E-101)

Your firm responded (para-phrased) that this information is not necessary, as your analysis based on the 95% rated capacity sound power levels of the turbines. (This approach is acceptable to MOE.)

Enercon further notes (Mar 7, 2014 e-mail) that the SPL of the E-82 and the E-101 Wind Energy Converters (WECs) do not exceed beyond the values at 95% rated capacity for hub heights specified in its **Sound Power Level documents**.

Issue:

There are several different Enercon documents noting different values for the 95% rated capacity sound power levels. For example:

- There is a April 2013 Enercon document (attached) noting that the 95% rated capacity sound power level for the E-101 3050 kW turbine is 106 dBA. (NRWC report states this value to be 104.8 dBA) (it is acknowledged that the ratings differ by 50 kW, Niagara turbines are smaller)
- 2. There is a April 2010 Enercon document (attached) noting that the 95% rated capacity sound power level for the E-82 2000 kW turbine is 103.5 dBA; (NRWC report states this value to be 103.3 dBA) (it is acknowledged that the ratings differ by 300 kW Niagara turbines are larger)

Requests:

1. Please provide by **March 20, 2014,** a written statement from Enercon confirming that the values noted in Table 3.2 of your Report (Sept 30, 2013) are accurate. (For reference the table is copied below.)

Table 3.2	Highest Wind Electrical Ou			mission	Corres	pondir	ng to 9	5% or a	bove R	ated
De	escription		Oct	ave Band	Sound P	ower Le	evel (dB	ref. 10-	2 Watts	<u> </u>
Fred	quency [Hz]	63	125	250	500	ik	2k	4k	8k	dB/dB/

Description	Octave Band Sound Power Levi			vel (dB	el (dB ref. 10-12 Watts)				
Frequency [Hz]	63	125	250	500	ik	2k	4k	8k	dB/dBA
ENERCON model E101 model at 8.3 m/s	112.5	107.7	107.2	104.0	98.3	91.6	85	74.4	113.9/ 104.8
ENERCON model E82 model at 9 m/s	112.8	110.8	103	100.5	98.7	92.6	80.5	74.5	115.5/ 103.3

2. Please also forward the cadna A file (s) to this office.

Regards Denton Miller 416-314-8310 **From:** Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: March 7, 2014 4:17 PM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca'

Subject: RE: Niagara Region Wind Farm Info Request -2c MOE ref file # 1175-972NB9

Denton,

In preparing the Noise Assessment Report, Stantec and NRWC understood this issue and the requirements outlined in the MOE Noise Guidelines for Wind Farms. This issue was raised by NRWC and discussed during the project design stage with the manufacturer, who confirmed that despite the change in power with wind speed and height their guaranteed maximum sound power at rated capacity would not change for the proposed turbine models, and that tonality would not result at these higher turbine heights or wind speeds. This was confirmed and guaranteed through a separate letter from Enercon, which has been provided to the MOE as part of the Noise Assessment Report.

Following your email, we have discussed this further with Enercon and they have prepared additional information to address your specific comment with respect to hub height and tonality (see attached). In the supplemental information, they have reconfirmed the following:

- 1. that the sound power levels of the E82 and E101 turbines do not exceed beyond the values at 95% rated capacity,
- 2. that the turbines shall not exceed the guaranteed maximum sound power levels for hub heights specified; and
- 3. that the tonal audibility shall be equal to or less than 2 dB over the whole operational range, including at wind speeds of 10m/s.

Stantec confirms that the analysis provided in the Noise Assessment Report considered the spectral sound power data (i.e. frequency based data) based on the IEC test and overall sound power level corresponding to 95% rated electrical output power as guaranteed by the manufacturer (Enercon). The manufacturer has confirmed that the sound power level at 95% rated capacity is independent of height and wind speeds and has addressed the tonality concerns in a separate letter attached.

The MOE raised similar concerns during the screening of REA application for completeness and we provided additional discussion and rationale at that time. We understood that this additional information was sufficient to address your concern, but trust that the supplemental information now provided by Enercon further supports the completion of your technical review.

If you require further information in this regard, we request that a meeting be held to review and discuss this issue with our noise experts as soon as possible.

Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Stantec

49 Frederick Street Kitchener ON N2H 6M7

Phone: (519) 585-7416 Cell: (519) 501-2368 Fax: (519) 579-6733 Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Friday, February 21, 2014 12:39 PM

To: Powell, Chris; Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca'

Subject: RE: Niagara Region Wind Farm Info Request -2c MOE ref file # 1175-972NB9

Hello Chris

I have yet to receive a response to the e-mails I sent to your office on January 24, and 30, 2014 regarding the sound power levels of the proposed turbines (questions 2 & 3 in the January 24, 2014 email to your office; copied below).

Please provide a response by March 7, 2014. If your firm is unable to provide a response by this date I will have to stop the clock on our service guarantee time.

If you have any questions, please feel free to contact me.

PS:

I also have additional questions via EBR comments pertinent to vacant lots which I will send to you in a separate e-mail later today.

Regards **Denton Miller** 416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: January 30, 2014 8:29 AM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; 'darrenc@nrwc.ca'; 'sberriman@nrwc.ca'; 'mervcroghan@nrwc.ca' Subject: Re: Niagara Region Wind Farm Information request -2 MOE ref file # 1175-972NB9

Ok. I'll follow up with Kana and we will get back to you shortly.

Chris Chris Powell, M.A. **Project Manager Environmental Planner** Stantec

Cell: (519) 501-2368

Sent from my Blackberry

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, January 30, 2014 08:26 AM

To: Powell, Chris; Raetsen, Sarah (ENE) < Sarah.Raetsen@ontario.ca >; Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; Darren Croghan <darrenc@nrwc.ca>; Shiloh Berriman (sberriman@nrwc.ca)

<<u>sberriman@nrwc.ca</u>>; Merv Croghan <<u>mervcroghan@nrwc.ca</u>>

Subject: RE: Niagara Region Wind Farm Information request -2 MOE ref file # 1175-972NB9

Hello Chris.

Thank you for your response to my questions noted in your previous e-mail (January 29, 2014 10:40 AM).

The e-mail has answered question # 1 (RE: Participating Receptors), however questions 2 and 3 still require attention.

Below is additional rationale as to why questions # 2 and 3 will require further clarification from your firm:

Rationale:

Documents prepared by the International Electrotechnical Commission note that the apparent sound power level is correlated to the acoustic reference wind speed and not to the wind speed at hub height. An increase in hub height will increase the apparent sound power level and might have an unpredictable effect on tonality.

The following examples from Enercon publications note this phenomenon:

Example 1: Sound Power Level for the E-82 with 2300 kW rated power

hub height	78 m	85 m	98 m	108 m
in 10 m height				4577
5 m/s	96,3 dB(A)	96.6 dB(A)	97.2 dB(A)	97.5 dB(A)
6 m/s	100.7 dB(A)	101.0 dB(A)	101.6 dB(A)	101.9 dB(A)
7 m/s	103.3 dB(A)	103.5 dB(A)	103.6 dB(A)	103.6 dB(A)
8 m/s	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)
9 m/s	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)
10 m/s	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)
95% rated power	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)

Example 2:

Sound Power Level for the E-33 with 330 kW rated power

hub height	37 m	44 m	49 m	50 m
5 m/s	90.9 dB(A)	91.0 dB(A)	91.3 dB(A)	91.3 dB(A)
6 m/s	95.1 dB(A)	96.0 dB(A)	96.5 dB(A)	96.5 dB(A)
7 m/s	98.6 dB(A)	98.9 dB(A)	99.0 dB(A)	99.0 dB(A)
8 m/s	99.7 dB(A)	99.8 dB(A)	99.9 dB(A)	99.9 dB(A)
9 m/s	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)
10 m/s	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)
95% rated power	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)	100.0 dB(A)

Therefore in accordance with Section 6.2.2 of the Noise Guidelines for Wind Farms please provide the sound power levels, frequency spectra in octave bands (63 to 8000 Hz), and tonality at integer wind speeds from 6 to 10 m/s for the subject wind turbines.

I have another question which I send in a separate e-mail later today.

Regards
Denton Miller
416-314-8310

From: Powell, Chris [mailto:Chris.Powell@stantec.com]

Sent: January 29, 2014 10:40 AM

To: Miller, Denton (ENE); Raetsen, Sarah (ENE); Hung, Timothy

Cc: Ganesh, Kana; Leggett, Al; Darren Croghan; Shiloh Berriman (sberriman@nrwc.ca); Merv Croghan

Subject: RE: Niagara Region Wind Farm Information request MOE ref file # 1175-972NB9

Denton,

In response to your email from Friday, January 24, 2014, Kana has provided the justification you are seeking to address your specific questions. Based on his input, we offer the following responses:

Question 1: Participating Receptors

All of the participating receptors will include project infrastructure and adhere to the definition provided in O. Reg. 359/09 and include a project component.

The REA application considered 80 turbines during the project planning and design stages, including the completion of the various technical reports. The 80 turbine layout is compliant with the noise requirements of the regulation. In order to meet the FIT contract requirements of 230 MW, only 77 of these 80 turbines are to be built (each rated at 3 MW - one or more to be de-rated to satisfy the 230MW requirement).

The specific turbines to be constructed will depend on the detailed engineering and wind resourcing studies to be completed. The decision to drop a turbine depends highly on wind power, and it is likely that a turbine may be dropped from a cluster of turbines where more than one turbine is located within the same property (due to wind resources). Based on that understanding, all participating receptors will continue to fit the definition of participating receptors.

In the event that a turbine is dropped from a property with only one turbine, the design of the wind farm will ensure that project infrastructure remains on that property to ensure its compliance as a participating receptor, in the event that it violates the 40.0 dBA noise threshold, as defined in the regulation.

Question 2: Re Table 3.1; Sound Power Levels for the E-101

In preparing the noise model and assessment, Stantec concluded the data is valid based on the following:

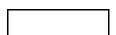
- Stantec used sound power levels in the analysis, which is a parameter independent of height of the source:
- The manufacturer has guaranteed /confirmed to NRWC that their machine will meet the sound b. power requirements as specified in the test sheet (included with the report); and
- IEC 61400-11 (i.e., international standard CAN/CSA-C61400-11-07) uses normalized height so that C. measurements are independent of height and terrain (i.e. location, where it was measured).

As such, the manufacturer's data values used in the noise model for predicting sound power levels at the various receptors are valid for the E-101 turbines.

Question 3: Re Table 3.1; Sound Power Levels for the E-82

Similar to the above rationale, the manufacturer's data values used in the noise model for predicting sound power levels at the various receptors are valid for the E-82 turbines.

We trust that this information is of assistance. If you have any further questions, please do not hesitate to give Kana or myself a call.


Sincerely,

Chris

Chris Powell, M.A.

Project Manager, Environmental Planner Stantec 49 Frederick Street Kitchener ON N2H 6M7

Phone: (519) 585-7416 Cell: (519) 501-2368 Fax: (519) 579-6733 Chris.Powell@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Friday, January 24, 2014 3:15 PM

To: Ganesh, Kana; Hung, Timothy; Raetsen, Sarah (ENE) Cc: Raetsen, Sarah (ENE); Powell, Chris; Leggett, Al

Subject: RE: Niagara Region Wind Farm Information request MOE ref file # 1175-972NB9

Hello Kana

He have started review of the subject application and to date have the following preliminary questions.

Question 1: Participating Receptors

Background:

Section 1 of the report notes the following:

The facility is comprised of 80 wind turbine. However, only 77 of the wind turbines will be constructed.

Section 4.2 of the report notes the following:

There are a total of 96 Participating Receptors.

Issue:

Please confirm that the participating Noise Receptors adhere with the definition in Section 1(6) of O. Reg. 359/09. Specifically will all participating receptors have infrastructure located on them?

If this is not the case then some of these participating receptors must be considered as points of reception and the analysis in the report updated to address these points of reception.

Question 2: Re Table 3.1; Sound Power Levels for the E-101

It is noted that the data in Appendix D (Enercon E-101) is for a turbine with a hub height of **99 m**. The proposal (Sept 30, 2013 report) notes the turbine nacelles will be at **124 m** and/or **135 m** height. Please comment on the implication of using the 99 m data in your analysis to represent turbines at **124 m** and/or **135 m** height.

Question 3: Re Table 3.1; Sound Power Levels for the E-82

It is noted that the data in Appendix D (Enercon E-82) is for a turbine with a hub height of **108 m**. The proposal (Sept 30, 2013 report) notes the turbine nacelles will be at **135 m** height. Please comment on the implication of using the 108 m data in your analysis to represent turbines at **135 m** height.

Thank you.

Regards

Denton Miller

Denton Miller | Senior Review Engineer | Team 5 | Environmental Approvals Branch I Ministry of the Environment 2 St. Clair Ave W. 12a Floor Toronto, Ontario, M4V 1L5 | Phone: 416-314-8310 | Denton.Miller@ontario.ca|

From: Ganesh, Kana [mailto:Kana.Ananthaganeshan@stantec.com]

Sent: January 7, 2014 4:18 PM

To: Miller, Denton (ENE); Hung, Timothy

Cc: Raetsen, Sarah (ENE); Powell, Chris; Leggett, Al

Subject: RE: Niagara Region Wind Farm Information request MOE ref file # 1175-972NB9

Thanks for the email Denton and happy New Year to you.

Please find attached the Tables; I have some of them in Word format (readily available) and some in Excel format.

Please let me know word format is acceptable for your purpose.

Best regards

Kana Ganesh, PhD., P.Eng

Sr. Acoustics Noise and Vibration Engineer 300 - 675 Cochrane Drive West Tower Markham ON L3R 0B8 Phone: 905-415-6332

Fax: 905-474-9889 kana.ganesh@stantec.com

Design with community in mind

stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Miller, Denton (ENE) [mailto:Denton.Miller@ontario.ca]

Sent: Tuesday, January 07, 2014 3:27 PM

To: Ganesh, Kana; Hung, Timothy Cc: Raetsen, Sarah (ENE); Powell, Chris

Subject: Niagara Region Wind Farm Information request MOE ref file # 1175-972NB9

Hello Kana / Timothy

I am the review engineer assigned to this file. To facilitate my review, please forward excel copies of the following tables in the noise assessment report.

Tables:

2.1	3.3	3.6	4.1
3.1	3.4	3.7	6.2
3.2	3.5	3.8	6.3

F.5 Appendix E

F.6 Barrier Co-ordinates

your file # 160950269 dated September 30, 2013.

Thank you

APPLICATION SUMMARY

Status	New Application	Assigned	
IDS Reference #	1175-972NB9	File #	R- 0018 -13
REA#			
Application Type	New Renewable Energy Approval		
Media	Noise		
Facility Type:			
Client Name	Niagara Region Wind Corporation	Client #	2349-972N8X
Client Aliases			
Site Name	Niagara Region Wind Farm	Site #	9527- 972NA9

Denton Miller | Senior Review Engineer | Team 5 | Environmental Approvals Branch I Ministry of the Environment 2 St. Clair Ave W. 12a Floor Toronto, Ontario, M4V 1L5 | Phone: 416-314-8310 | <u>Denton.Miller@ontario.ca</u>|

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Appendix G4 – Supplemental MOECC Receptor Verification Comments

Info Request 12: Receptors 986, 1002, 856, 3139, 3142, 2922

On September 26, 2014, the Ministry of the Environment and Climate Change (MOECC) raised concerns with respect to the location of 6 PORs that had been identified by members of the public. The rationale for the location of these PORs was requested, along with an update to the NAR is adjustments were required.

O_986 - Regional Road 65, West Lincoln

Concern:

The following questions were posed by the MOECC:

- 1. Please confirm the location (UTM Coordinates) of the POR on this lot.
- 2. Does the current UTM Coordinates represent a POR?
- 3. Please identify the building immediately south of the current location of this POR. (Approximately 546 m away from T38).
- 4. If a POR please amend noise report accordingly.

Response:

Upon review of the aerial photography, the location of this POR does not represent the centre of a noise receptor. As such, the location has been adjusted to the centre of the dwelling, located to the southwest of the original POR location. This adjustment has been reflected in the noise model and corresponding updates to the NAR above. The result of this change is a reduction in the separation between the centre of the closest turbine (T38) and this POR from 573 m to 559 m, and a minor increase in the sound level from 39.5 to 39.8 dBA.

The building immediately south of the current location (i.e. to the southeast of the dwelling) is not a noise receptor. This building, as evidenced by the photograph below, is a garage, and is therefore not reflected in the noise model as a POR.

Action:

The noise model, mapping and appropriate tables in the NAR have been amended to reflect the minor shift in the location of this POR. There are no impacts to the Project since this receptor complies with the minimum setback and noise threshold requirements under O. Reg. 359/09.

O_1002 - Regional Road 65, West Lincoln

Concern:

The following questions were posed by the MOECC:

- 1. Please confirm the location (UTM Coordinates) of the POR on this lot.
- 2. Does the current UTM Coordinates represent centre of the POR?

Response:

Upon review of the aerial photography, the location of this POR does not represent the centre of the noise receptor. As such, the location has been adjusted to the centre of the dwelling, which has been reflected in the noise model and corresponding updates to the NAR above. The result of this change is an increase in the separation between the centre of the closest turbine (T38) and this POR from 551 m to 555 m, and a minor decrease in the sound level from 39.8 dBA to 39.7 dBA.

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Action:

The noise model, mapping and appropriate tables in the NAR have been amended to reflect the minor shift in the location of this POR. There are no impacts to the Project since this receptor complies with the minimum setback and noise threshold requirements under O. Reg. 359/09.

O 856 – Inman Rd, Haldimand

Concern:

The following questions were posed by the MOECC:

- 1. Please confirm the location (UTM Coordinates) of the POR on this lot.
- 2. Does the current UTM Coordinates represent centre of the POR?

Response:

Upon review of the aerial photography, the location of this POR does not represent the centre of the noise receptor. As such, the location has been adjusted to the centre of the dwelling, which has been reflected in the noise model and corresponding updates to the NAR above. The result of this change is an increase in the separation between the centre of the closest turbine (T20) and this POR from 552 m to 556 m, and there is no change in the predicted sound level, which remains at 40.0 dBA.

Action:

The noise model, mapping and appropriate tables in the NAR have been amended to reflect the minor shift in the location of this POR. There are no impacts to the Project since this receptor complies with the minimum setback and noise threshold requirements under O. Reg. 359/09.

O 3139 and O 3142 - Regional Road 65, West Lincoln

Concern:

The following questions were posed by the MOECC:

- 1. Please confirm the rationale used to determine the location (UTM Coordinates) of the POR on this lot.
- 2. Should the POR be a vacant lot receptor?

Response:

Both receptors represent vacant lot receptors as there are no dwellings constructed, or approved for construction, on the subject properties. These receptors were mis-labelled in the original noise model but have been corrected above.

Further, both of these PORs are located on land-locked parcels created as a result of the existing Hydro One transmission lines bisecting the farms (i.e. to the north and south of these parcels). These parcels are legally identified as separate properties with no road frontage. However, noise receptors were conservatively identified on these properties in the unlikely event that future road access was provided from the south along the unopened road allowance. The POR's were located near the south of these properties, closest to the unopened road allowance, similar to the development pattern in the area (i.e. located closest to the potential location where access would be considered). Access from the north is not available. Despite the conflict in naming convention, the location of these POR's represents the location where a potential structure would reasonably be constructed in the event that access from the

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

south was provided. The minimum REA setback of 550m has been accommodated for these receptors and the noise model demonstrates that the sound level does not exceed 40.0 dBA.

Action:

The noise model, mapping and appropriate tables in the NAR have been amended to re-label these noise receptors as V_3139 and V_3142 to reflect the fact that they represent vacant lots. There are no impacts to the Project since this receptor complies with the minimum setback and noise threshold requirements under O. Reg. 359/09.

O_2922 - Vaughn Rd, West Lincoln

Concern:

The following questions were posed by the MOECC:

- 1. Please confirm the location (UTM Coordinates) of the POR on this lot.
- 2. Does the current UTM Coordinates represent a POR?
- Please identify the buildings immediately south of the current location of this POR. (Approximately 520 m away from the closest turbine). If a POR please amend noise report accordingly.
- 4. Please identify the building immediately north of the current location of this POR. If a POR please amend noise report accordingly.

Response:

Upon review of the aerial photography, the location of this POR does not represent the centre of a noise receptor. Instead, it is located on a shed (or similar storage structure) south of the house and closer to the nearest turbine (T78). As such, the location has been adjusted to the centre of the dwelling north of this shed, which has been reflected in the noise model and corresponding updates to the NAR above. The result of this change is an increase in the separation between the centre of the closest turbine (T78) and this POR from 563 m to 582 m, and a minor decrease in the sound level from 39.6 dBA to 39.4 dBA.

The building immediately south of the current location (i.e. to the southeast of the dwelling) is not a noise receptor. This building is a barn and is therefore not reflected in the noise model as a POR.

Action:

The noise model, mapping and appropriate tables in the NAR have been amended to reflect the minor shift in the location of this POR. There are no impacts to the Project since this receptor complies with the minimum setback and noise threshold requirements under O. Reg. 359/09.

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

Appendix G5 - REA Amendment (October, 2015) - Info. Request #1, #2 and #3

Info Request #1 and #2:

From: Miller, Denton (MOECC) [mailto:Denton.Miller@ontario.ca]

Sent: Tuesday, January 19, 2016 2:41 PM

To: Mallinen, Keni

Cc: Ganesh, Kana; Raetsen, Sarah (MOECC)

Subject: FW: FWRN Non-Compliance

Hello Keni

Please comment on the highlighted sections of the e-mail below.

Thank you

Regards Denton Miller 416-314-8310

From:

Sent: January 17, 2016 10:20 PM

To: (MOECC)

Cc:

Subject: FWRN Non-Compliance

Ms. Hedley, Mr. Murray, Ms. Paul, Mr. Evans:

After looking at the modification documents for the FWRN LP (formerly NRWC) project, there is a non-compliance issue. Receptor O_2550 was formerly a participating receptor but is now a non-participating receptor.

In the noise assessment dated September 2014, P_2550 was predicted to have a noise level of 40.9 dBA. P_2550 has now changed to O_2550 a non-participating home in the project. When Stantec did the noise modeling for the report dated October 2, 2015, the loudest turbine was not used for all of the turbines. Using 104.8 dBA (really should be 106 dBA) for all of the turbines will predict that the home at O_2550 will be 40.9 dBA.

The report dated October 2, 2015 has O_2550 near turbine T49 which is incorrect. How many more mistakes are in the document?

The new amendments must not be approved and the existing REA must be revoked. Please respond to this concern.

Response #1 to "Using 104.8 dBA (really should be 106 dBA) for all of the turbines will predict that the home at O_2550 will be 40.9 dBA":

The Sound Power Level of 104.8 dBA does not represent all the Project Turbines. Table 2.1 provides the sound power level of two turbines used in the project; Table 3.1 and Table 3.2 provide additional details. Equipment sound power data is included in Appendix D. As

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT – REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

indicated in the manufacturer's data, the correct sound power level is 104.8 dBA for the E101 models, and 102.9 dBA for E101 G2 models. Table 3.4 identifies turbines that are E101 (with 104.8 dBA) and E101 G2 (102.9 dBA).

Response #2 to "O_2550 near turbine T49 which is incorrect":

Yes; the Cadna A model used for the REA amendment application correctly predicts the results and identifies turbines. This model was shared with the MOECC in October 2015. When preparing results tables in Excel, there was a shift in Excel rows during formatting. This has been revised in the summary Table 6.3 and detailed Table in Appendix C. This report revision (Revision 9) includes these changes.

Stantec stands by the model shared with the MOECC.

Info Request #3 and Repeat of #2:

From: Miller, Denton (MOECC) [mailto:Denton.Miller@ontario.ca]

Sent: Thursday, January 28, 2016 12:12 PM

To: adam.rosso@boralex.com

Cc: Ganesh, Kana; Raetsen, Sarah (MOECC)

Subject: RE: FWRN info request # 3

Hello Adam:

(Info request #3)

The amendment application notes that a customized E 101 2.9 MW G2/G3 turbine will now be part of the application. It further notes that this turbine will be approximately 2dB quieter than the E 101, 3.0 MW turbine also proposed in this wind facility.

Please provide a qualitative and/or quantitative description of the differences between the two turbines. Specifically what changes were made to enable the customized E 101, 2.9 MW G2/G3 turbine to be 2 dB quieter than the E 101, 3.0 MW turbine.

Kana

(re: Info request # 2)

With respect to my January 19, 2016 email below, it is acknowledged that Section 4.2, Appendix C and Figure 2.1b of your October 2nd, 2015 Report addresses the subject issue. However I require confirmation that your firm stands behind the information in the Report.

Response to Info Request #3:

Boralex has obtained further clarifications from the equipment manufacturer and provided the response to Stantec to include in the report (included following Page G.16). The following is an excerpt from the letter:

NIAGARA REGION WIND FARM ACOUSTIC ASSESSMENT REPORT - REA AMENDMENT

Appendix G Response to Ministry of the Environment Technical Review Comments February 05, 2016

The E-101 2.9MW G2/G3 WEC is an evolution of the E-101 WEC platform employing key characteristics aimed at reducing overall WEC SPL. These characteristics, which differ from the E-101 3.0MW WEC, include: (i) limitation of power output to 2.9MW, (ii) adjusted power curve for the entire range of operational wind speeds, and (iii) updates to generator design.

The E-101 2.9MW G2/G3 WEC has been measured according to IEC standards by T&H Ingenieure, an independent engineering firm. The results of the measurement form the basis of the SPL datasheet for the E-101 2.9MW G2/G3 WEC. As such, ENERCON confirms the validity of using the information provided in the datasheet for the Niagara Region wind farm facility.

In addition the manufacturer Enercon has confirmed that the quantitative implications of these changes lead to reduced rotational speed of the turbine from 14.7 rpm (as in the E-101 3.0MW) to 14.1 rpm (as in the E-101 2.9MW) as well as reduced maximum SPL.

Note: the measured SPL documents specify the difference in rpm as mentioned above.

Response to Info Request #2 (repeat): Stantec stands by the model shared with the MOECC in October 2015, and acknowledges that a row shift occurred during formatting of Table 6.3 presented in October 2015 Report, which has now been updated.

Niagara Region Wind Farm - W-06795

Hassan Shahriar Commercial Manager, Ontario

Telephone: (416)572 8912 Email: hassan.shahriar@enercon.de

By email

July 03, 2015

Adam Rosso Manager of Project Development Boralex Inc. 174 Mill Street, Milton, Ontario L9T 1S2

Subject: Supplementary information on Sound Power Level of the E-101 2.9 MW G2/G3

Dear Mr. Rosso:

The information provided in this letter is for clarification purposes pertaining to Sound Power Level (SPL) of the E-101 Wind Energy Converter (WEC). For specific technical information, please refer to the SPL datasheet.

The E-101 2.9MW G2/G3 WEC is an evolution of the E-101 WEC platform employing key characteristics aimed at reducing overall WEC SPL. These characteristics, which differ from the E-101 3.0MW WEC, include: (i) limitation of power output to 2.9MW, (ii) adjusted power curve for the entire range of operational wind speeds, and (iii) updates to generator design.

The E-101 2.9MW G2/G3 WEC has been measured according to IEC standards by T&H Ingenieure, an independent engineering firm. The results of the measurement form the basis of the SPL datasheet for the E-101 2.9MW G2/G3 WEC. As such, ENERCON confirms the validity of using the information provided in the datasheet for the Niagara Region wind farm facility.

I trust the above information is satisfactory for your needs.

Sincerely,

Hassan Shahriar

ENERCON Canada Inc.

cc: Étienne Champagne, Boralex Inc.
Andrew Kuhn, ENERCON Canada Inc.

NIAGARA REGION WIND FARM - RENEWABLE ENERGY APPROVAL AMENDMENT MODIFICATION REPORT

Appendix E:

Correspondence with MOECC

Ministry of the Environment and Climate Change

Environmental Approvals
Branch

135 St. Clair Avenue West 1st Floor Toronto ON M4V 1P5 Tel.: 416 314-8001 Fax: 416 314-8452 Ministère de l'Environnement et de l'Action en matière de changement climatique

Direction des autorisations environnementales

135, avenue St. Clair Ouest Rez-de-chaussée Toronto ON M4V 1P5 Tél: 416 314-8001 Téléc.: 416 314-8452 Ontario

August 5, 2015

Adam Rosso, P.Eng., M.Sc.
Director of Development
Boralex
c/o FWRN LP
4672 Bartlett Road South
Beamsville ON LOR 1B1
e-mail: adam.rosso@boralex.com

Dear Mr. Rosso:

The Ministry of the Environment and Climate Change (MOECC) has reviewed the July 24, 2015 letter (received on July 30, 2015) regarding proposed modifications to the Niagara Region Wind Farm (Project). The MOECC issued Renewable Energy Approval (REA) No. 4353-9HMP2R to Niagara Region Wind Corporation on November 6, 2014. The MOECC understands that the company is seeking amendments to the Project as it was described in the REA application and approved by the MOECC. The MOECC also understands that the company has submitted a REA amendment application to the MOECC with respect to an ownership name change from Niagara Region Wind Corporation to FWRN LP. This amendment application is currently under review.

From the July 24, 2015 letter, the MOECC understands that the company is requesting the following changes:

- Relocation of the Smithville transmission line (at the request of the Township of West Lincoln, to avoid the Town of Smithville and areas proposed for future urban expansion);
- Expansion of the footprint for the Interconnect Station on Mountainview Road (to accommodate additional equipment in response to Hydro One Networks Inc.'s connection requirements);
- Addition of permanent alternative access road from T12 to T11 and from T11 to T41 (to enable the Project to potentially avoid delivery of components from Gore A Road);
- Adjustment of the footprint of the North Substation (to avoid archaeological resources that would require a Stage 3 Archaeological Assessment);
- Addition of operational flexibility to install junction boxes within either the municipal right-ofway or on participating properties within previously assessed areas along the proposed collector line routes (to provide greater flexibility during the detailed design process to address municipal comments);
- 6) Changing 11 of the 80 approved wind turbine models to a customized ENERCON E101 wind turbine, which reduces the hub height of the 11 turbines from 135 metres (m) to 124 m. The number of turbines to be installed will remain the same at 77, and all will be located in the exact same locations as approved;

- 7) Removal of Schedule C from the approval, as the sound power level of the transformer selected for the Project is less than that modelled in the Noise Assessment Report as submitted with the REA application. As such, the reduced sound power level negates the need for sound barriers; and
- 8) Adjustments to access road entrances on private land owned by participating landowners, based on detailed design and the need for turning radius at nine entrance locations.

The MOECC has completed a cursory review of the information provided; however additional information and revised reports will be need to be submitted for the MOECC to complete a comprehensive assessment of the proposed changes. This submission should be submitted in the form of a *Draft Modifications Document*. Details of the components of a Modification Document are provided in Section 3.1.1 of Chapter 10 of the *Technical Guide to Renewable Energy Approvals*. Upon receipt of this submission the MOECC will make a determination regarding the category of project change and provide guidance on next steps.

The Draft Modification Document should include:

- A summary of the proposed project changes, including the reason for each change.
- An explanation of how the desired change will resolve any issue(s) identified, whether there
 are any new negative environmental effects that will or are likely to occur as a result of the
 proposed change, and if required, how those effects are proposed to be mitigated.
- A list of each report and study submitted with the REA application and a description of the amendments/updates to each, including:
 - where reports or studies do not require a material change to the content, explain how the proposed project change does not impact the document;
 - a table that shows the page number, section, original text and revised text, where appropriate;
 - a summary of the discussions with the Ministry of Natural Resources and Forestry (MNRF) and Ministry of Tourism, Culture and Sport (MTCS) with respect to the proposed change(s) and, if required, what additional work was imposed by the respective ministries; and
 - o any new letter or addendum to the original letter issued by MNRF and/or MTCS.
- Identification and a summary of new documents that are now required with respect to the proposed project change(s) that were not part of the consultation process.
- A copy of the original site plan and a revised site plan if it has been changed.
- A revised noise assessment report (NAR) which reflects the proposed project changes and includes:
 - a chart which summarizes the difference in the modelled impact at each noise receptor, comparing the revised model output to that in the previously approved NAR:
 - manufacture's acoustic emission summary for all wind speeds;
 - o manufacture's statement for tonal audibility and measurement uncertainty;
 - manufacturer's emission test report for the de-rated (2.9 MW) ENERCON E101 wind turbine:
 - manufactuter's guarantee letter with new name plate capacity all in accordance with CAN/CSA-IEC-61400-11.

Upon receipt and review of the *Draft Modifications Document* the Director will categorize the proposed project change (as per Chapter 10 of the Ministry's *Technical Guide to Renewable Energy Approvals*) and will outline any additional requirements which may include notifications,

public meetings and potentially an additional Environmental Registry (EBR) posting.

If you have any questions, please feel free to contact Sarah Raetsen at (416) 326-6089.

Sincerely,

Mohsen Keyvani, P.Eng. Supervisor – Team 5

MOECC, Environmental Approvals Branch

cc. Kathleen Hedley, Director, MOECC, Environmental Approvals Branch
Mansoor Mahmood, Manager, MOECC, Environmental Approvals Branch
Rich Vickers, District Manager, MOECC Niagara District Office
Steve Green, Provincial Officer, MOECC Niagara District Office
Jim Beal, A/Renewable Energy Coordinator, MNRF
Chris Schiller, Manager, Culture Services Unit, MTCS
Irena Jurakic, A/Archaeology Review Officer, MTCS
Chris Powell, Stantec
Kerrie Skillen, Stantec
Shiloh Berriman, Enercon

FWRN LP 4672 Bartlett Road South Beamsville, ON LOR 1B1

July 24, 2015

Ms. Kathleen Hedley
Director
Environmental Approvals Branch
Ministry of the Environment and Climate Change
135 St. Clair Avenue West, Floor 4
Toronto, Ontario
M4V 1P5

Attention: Kathleen Hedley, Director, Environmental Approvals Branch

Reference: Niagara Region Wind Farm (the Project) – Proposed Modifications

MOECC reference # 4353-9HMP2R

Dear Ms. Hedley;

As you know, Niagara Region Wind Corporation (NRWC) is developing the Niagara Region Wind Farm (the Project), a proposed 230 MW wind energy project within the Townships of West Lincoln and Wainfleet and the Town of Lincoln within the Niagara Region and within Haldimand County in Southern Ontario. Renewable Energy Approval (REA) for the Project was received on November 6, 2014. Since receipt of the REA, and completion of the Environmental Review Tribunal, NRWC has identified the need to make minor amendments to the Project as it was described in the REA Application documents and subsequently approved by the Ministry of the Environment and Climate Change (MOECC).

We are writing to seek confirmation from the MOECC that these changes would be assessed as Technical or Project Design Changes under the MOECC's Technical Guide to Renewable Energy Approvals as per the description provided in this letter.

The proposed modifications include relocation of the transmission line, expansion of interconnect station footprint, alternate access road alignments, reorientation of North substation, relocation of junction boxes, revisions to proposed turbine model / tower height, revision of transformer noise characteristics, and adjustments to the location of access road entrances.

An application to acknowledge the change in ownership has been submitted to acknowledge the change in ownership of the Project from "Niagara Region Wind Corporation to "FWRN LP" as FWRN LP purchased the Project (submitted previously under separate cover).

Further detail is outlined below regarding why these modifications meet the factors for a Technical or Project Design Change classification as outlined in Chapter 10 of the Technical Guide to Renewable Energy Approvals.

I. Project Design Change:

A. Smithville Transmission Line Relocation

This modification involves the rerouting of the transmission line, at the request of the Town of West Lincoln, to avoid the Town of Smithville and areas proposed for future urban expansion. In the event that the amendment is not feasible in the required Project timeframe, the transmission line will follow the originally approved alignment.

The construction and installation activities for the transmission line will be completed in the same manner as described in the Construction Plan Report, submitted as part of the REA Application.

The proposed modification qualifies as a Project Design Change for the following reasons:

- Revises the boundary of the original Project Location.
- Minimal increase in the overall impact at the receptors.
- Requires undertaking Stage 2 Archaeological Assessment and NHA on lands not previously assessed.
- Requires reconfirmation of written comments from MTCS and MNRF.

B. Revised Footprint of Interconnect Station

This modification involves the expansion of the footprint for the Interconnect Station on Mountainview Road to accommodate additional equipment in response to Hydro One Networks Inc. (HONI) connection requirements determined during detailed design while avoiding archaeological resources.

The construction and installation activities for the interconnection station will be completed in the same manner as described in the Construction Plan Report, submitted as part of the REA Application. Additional equipment beyond what was described in the Project Description Report will be installed at this location, including a small building, fence and riser structures, however no transformer is required.

The proposed modification qualifies as a Project Design Change for the following reasons:

- Revises the boundary of the REA approved Project Location;
- Stage 2 Archaeological Assessment and NHA previously completed for REA;

- Requires notification to MTCS for change in project footprint, noting avoidance or archaeological sites;
- It will not require any additional NHA field work. Requires notification to MNRF for small
 increase in footprint and of any additional features in the ZOI; and
- There are not expected to be any changes to the previous recommendations or comments received from the MNRF and MTCS.
 - C. Alternate Access Road Between T12, T11 and T41

This modification involves adding a permanent alternative access road from T12 to T11 and from T11 to T41. The access roads would be located along the collector line route already approved in the REA. The approved access roads to these turbines are not being modified. The modification would enable the Project to potentially avoid delivery of components from Gore A Road, which has been identified by Haldimand County as a potential concern.

The proposed modification qualifies as a Project Design Change for the following reasons:

- Revises boundary of the REA approved Project Location;
- Stage 2 Archaeological Assessment previously completed for REA;
- Requires notification to MTCS for change in project footprint;
- Requires additional NHA field work and an update to the NHA to recognize changes to natural features;
- Requires reconfirmation of written comments from MNRF; and
- There are not expected to be any changes to the previous recommendations or comments received from the MNRF.

Technical Changes:

D. Adjust Footprint of North Substation

This modification involves the adjustment of the footprint for the North Substation (north of the Welland River) to accommodate reorientation of the substation during detailed design to avoid archaeological resources that would require a Stage 3 Archaeological Assessment. The footprint would be re-oriented into an area previously assessed as part of the construction laydown area. However, the location of the transformer remains consistent with the REA location as defined in the Noise Assessment Report (NAR) and REA Conditions of Approval.

The construction and installation activities for the North substation will be completed in the same manner as described in the Construction Plan Report, submitted as part of the REA Application.

The proposed modification qualifies as a Technical Design Change for the following reasons:

- No increase to the Project Location size;
- No increase in the overall impact at the receptors;

- Modification will not require additional archaeological or cultural heritage assessment.
 Assessment for the proposed new footprint area of the North substation has already been completed as part of the assessment of a construction lay down area. Therefore, there are not expected to be any changes to the previous recommendations or comments received from the Ministry of Tourism, Culture and Sport (MTCS) for further assessment; and
- Modification will not require any additional Natural Heritage Assessment (NHA). The NHA
 for the proposed new footprint area of the North substation was already been
 completed as part of the assessment of a construction lay down area. Therefore, there
 are not expected to be any changes to the previous recommendations or comments
 received from the Ministry of Natural Resources and Forestry (MNRF).

E. Relocation of Junction Boxes

This modification involves adding operational flexibility to install junction boxes within either the Municipal Right-of-Way, as proposed and approved in the REA, or on participating properties within previously assessed areas along the proposed collector line routes. Currently, the Project is approved to install junction boxes within the Right-of-Way. However, through continued consultation with area municipalities, a request to locate these junction boxes (where feasible) was received. This amendment would provide greater flexibility during the detailed design process to addresses Municipal comments while remaining within previously assessed areas.

The construction and installation activities for the junction boxes will be-completed in the-same manner as described in the Construction Plan Report, submitted as part of the REA Application.

The proposed modification qualifies as a Technical Design Change for the following reasons:

- No increase to the Project Location size;
- No increase in the overall impact at the receptors;
- Junction boxes will be constructed within previously assessed constructible area along proposed collector and fibre optic lines;
- Modification will not require additional archaeological or cultural heritage assessment.
 Assessment for the proposed relocation of junction boxes has already been completed as part of the assessment of the Project constructible area. Therefore, there are not expected to be any changes to the previous recommendation or comments received from the MTCS for further assessment; and
- Modification will not require any additional NHA. As above, the NHA for the proposed relocation of junction boxes has already been completed. Furthermore, no new potential effects are anticipated as a result of this modification. Therefore, there are not expected to be any changes to the previous recommendations or comments received from the MNRF.

F. Alternate Turbine Model

This modification involves changing 11 of the Project's 80 turbines to a customized ENERCON E101 (2.95MW) turbine on 124 m towers from a combination of different ENERCON models. Since the Project's inception and permitting, ENERCON has further reduced the sound characteristics of the E101 turbine through the following:

- limitation of power output to 2.9MW;
- adjusted power curve for the entire range of operational wind speeds; and
- updates to the generator design.

As a result, the Project no longer wishes to install ENERCON E-82 turbines and is proposing to reduce the tower height from 135 m to 124 m, such that all proposed turbines will be at the same height and the proposed layout will consist of only ENERCON E101 turbines – 69 E101 3.0 MW and 11 E101 2.9MW.

The number of turbines to be installed will remain the same at 77. However, the new turbine model would be physically lower than the REA approved turbines, specifically with a hub height of 124 m (rather than the previously approved hub height of 135 m) and rotor diameter of 101 m. While this reduction in tower height addresses a potential concern raised by Environment Canada during the review of the REA, the Project remains committed to completing the supplemental bird mortality monitoring outlined in the REA Conditions.

Specifications of the REA approved turbines and the new turbine model are summarized below in **Table 1.1**.

	REA Approved	New Turbine Mode	
Manufacturer	ENERCON	ENERCON	ENERCON
Model	E101	E82	E101
Name plate capacity (MW)	3.0 MW	2.3 MW	2.9 MW
Hub height above grade	124 m or 135 m	135 m	124 m
Blade length	48.6m	38.8 m	48.6 m
Rotor diameter	101 m	82 m	101 m
Blade sweep area	8,012 m ²	5,281 m²	8,012 m ²
Rotational Speed	Variable, 4 – 14.5 rpm	Variable, 6 - 18 rpm	Variable, 4 – 14.1 rpm
Noise Level	104.8 dBA	103.3 dBA	102.9 dBA
Frequency spectrum	50 Hz or 60 Hz	50 Hz or 60 Hz	50 Hz or 60 Hz

The construction and installation activities for the turbines will be completed in the same manner as described in the Construction Plan Report, submitted as part of the REA Application.

The proposed modification qualifies as a Technical Design Change for the following reasons:

- No increase to the Project Location size, whereby a conservative approach for project footprint was included in the various REA documents and in calculating corresponding setbacks (ex. Waterbody Report, Property Line Setback Report, NHA);
- An updated Noise Assessment Report will be prepared to reflect the change in turbine
 model and tower height, with supporting documentation to be provided by the turbine
 supplier. It will demonstrate that there is no increase in the modelled noise levels at any
 of the noise receptors as presented in the NAR because the noise profile of the proposed
 turbines results in the same or lower sound levels at all receptors;
- Modification will not require additional archaeological or cultural heritage assessment.
 Assessment for the current 80 turbine sites has been completed, the modification does not involve the relocation of any turbine sites, and the turbines will be constructed within the previously assessed constructible area. Therefore, there are not expected to be any changes to the previous recommendation or comments received from the Ministry of Tourism, Culture and Sport (MTCS) for further assessment.
- Modification will not require any additional NHA. As above, the NHA for the current 77 turbine sites has been completed, the modification does not involves the relocation of any turbine sites, and the turbines will be constructed within the previously assessed constructible area. Furthermore, no new potential effects are anticipated as a resolve of this modification. Therefore, there are not expected to be any changes to the previous recommendations or comments received from the MNRF.

G. Alternate Transformer

The sound <u>power level of the transformer selected for the Project is less than that modelled in the NAR as approved in the REA.</u> As such, the reduced sound power level negates the need for sound barriers as identified in the approved NAR and REA Conditions.

The proposed modification qualifies as a Technical Design Change for the following reasons:

- No increase to the Project Location size;
- An updated Noise Assessment Report will be prepared to address the change in transformer noise for the Project, with supporting documentation to be provided by the transformer supplier. It will demonstrate that there is no increase in the modelled noise at the noise receptors near the Project Location because the noise profile of the transformer results in the same or lower sound levels at all receptors.
- Modification will not require additional archaeological or cultural heritage assessment.
 Therefore, there are not expected to be any changes to the previous recommendation or comments received from the Ministry of Tourism, Culture and Sport (MTCS) for further assessment.
- Modification will not require any additional NHA. Therefore, there are not expected to be any changes to the previous recommendations or comments received from the MNRF.

H. Revised Access Road Entrances

This modification involves adjustments to access road entrances, on private land owned by participating landowners, based on detailed design (engineering) and need for turning radius (driving surface) at nine entrance locations;

- Entrance 4 to 179 and 180
- Entrance 10 to T58
- Entrance 22 to T76,
- o Entrance 27 to T09 and T51.
- Entrance 36 to T10 and T37,
- Entrance 42 to T82,
- Entrance 46 to T84.
- o Entrance 49 to T99.
- Entrance 50 to T20.

The construction and installation activities for the access roads will be completed in the same manner as described in the Construction Plan Report, submitted as part of the REA Application.

The proposed modifications qualify as Technical Changes for the following reasons:

- No increase in the overall impact at the receptors
- Stage 2 AA field investigation are required at one of the proposed entrances (Entrance 36) where the relocated entrance is located outside of the area previously assessed in the REA. The location of the new entrance is along an existing driveway currently used by the landowner. An addendum to the approved Stage 2AA will be submitted to the MTCS for confirmation;
- Modification at the remaining entrances will not require additional archaeological or cultural heritage assessment. Assessment for the proposed shift to entrances has already been completed as part of the assessment of the area surrounding the access road entrances. Therefore, there are not expected to be any changes to the previous recommendation or comments received from the Ministry of Tourism, Culture and Sport (MTCS) for further assessment.
- Modification will not require any additional Natural Heritage Assessment (NHA) field work. Entrance 4 (179 and 80) and 36 (110 and 137) result in a small increase to the Zone of Investigation (ZOI) that was assessed in the NHA but features may or may not be described as being within the ZOI. MNRF would be notified of any additional features present within the ZOI. Reconfirmation from MNRF is not expected. There are not expected to be any changes to the previous recommendations or comments received from the MNRF.

Conclusion

The Project team is continually reviewing design features of the Project layout to consider efficiencies, address stakeholder comments, and further reduce potential environmental impacts. In our opinion, the proposed modifications described above are properly classified as Technical or Project Design Changes because they meet the factors set out in Chapter 10 of the Technical Guide to Renewable Energy Approvals.

We request confirmation from the MOECC that, if submitted as described above, the proposed modifications would be classified as indicated above. The modifications will be communicated by: filing a Notice of Proposed Change in the local newspapers; sending the Notice to stakeholders in the project study area; posting the Notice to the Project website; filing a Modification Report to the MOECC, local Municipalities, and Aboriginal Communities; and posting the Modification Report to the Project website.

If you have any questions or require any further information please do not hesitate to contact the undersigned at 416-389-8942 or Chris Powell at 519-780-8172.

Regards,

Adam Rosso P. Eng. M. Sc.

Director of Development, Boralex

cc: Chris Powell, Stantec Consulting Ltd.

Kerrie Skillen, Stantec Consulting Ltd.